Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2017) <doi:10.1080/10618600.2017.1407325>.
Version: | 1.0-0 |
Depends: | R (≥ 3.2.3), coda, colorspace, mgcv |
Imports: | Formula, MBA, mvtnorm, sp, Matrix, survival, methods, parallel |
Suggests: | akima, bit, fields, gamlss, geoR, rjags, BayesX, BayesXsrc, mapdata, maps, maptools, raster, spatstat, spdep, zoo, keras, splines2, sdPrior, glogis, glmnet |
Published: | 2018-04-13 |
Author: | Nikolaus Umlauf [aut, cre],
Nadja Klein [aut],
Achim Zeileis |
Maintainer: | Nikolaus Umlauf <Nikolaus.Umlauf at uibk.ac.at> |
License: | GPL-2 | GPL-3 |
NeedsCompilation: | yes |
Citation: | bamlss citation info |
Materials: | ChangeLog |
In views: | Bayesian |
CRAN checks: | bamlss results |
Reference manual: | bamlss.pdf |
Package source: | bamlss_1.0-0.tar.gz |
Windows binaries: | r-devel: bamlss_1.0-0.zip, r-release: bamlss_1.0-0.zip, r-oldrel: bamlss_1.0-0.zip |
OS X binaries: | r-release: bamlss_1.0-0.tgz, r-oldrel: bamlss_1.0-0.tgz |
Old sources: | bamlss archive |
Please use the canonical form https://CRAN.R-project.org/package=bamlss to link to this page.