bamlss: Bayesian Additive Models for Location Scale and Shape (and Beyond)

Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2017) <doi:10.1080/10618600.2017.1407325>.

Version: 1.0-0
Depends: R (≥ 3.2.3), coda, colorspace, mgcv
Imports: Formula, MBA, mvtnorm, sp, Matrix, survival, methods, parallel
Suggests: akima, bit, fields, gamlss, geoR, rjags, BayesX, BayesXsrc, mapdata, maps, maptools, raster, spatstat, spdep, zoo, keras, splines2, sdPrior, glogis, glmnet
Published: 2018-04-13
Author: Nikolaus Umlauf [aut, cre], Nadja Klein [aut], Achim Zeileis ORCID iD [aut], Meike Koehler [aut], Thorsten Simon [ctb]
Maintainer: Nikolaus Umlauf <Nikolaus.Umlauf at>
License: GPL-2 | GPL-3
NeedsCompilation: yes
Citation: bamlss citation info
Materials: ChangeLog
In views: Bayesian
CRAN checks: bamlss results


Reference manual: bamlss.pdf
Package source: bamlss_1.0-0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X binaries: r-release: bamlss_1.0-0.tgz, r-oldrel: bamlss_1.0-0.tgz
Old sources: bamlss archive


Please use the canonical form to link to this page.