In this vignette we present plots for classification models evaluation.
library(auditor)
library(mlbench)
We work on PimaIndianDiabetes dataset.
data(PimaIndiansDiabetes)
head(PimaIndiansDiabetes)
## pregnant glucose pressure triceps insulin mass pedigree age diabetes
## 1 6 148 72 35 0 33.6 0.627 50 pos
## 2 1 85 66 29 0 26.6 0.351 31 neg
## 3 8 183 64 0 0 23.3 0.672 32 pos
## 4 1 89 66 23 94 28.1 0.167 21 neg
## 5 0 137 40 35 168 43.1 2.288 33 pos
## 6 5 116 74 0 0 25.6 0.201 30 neg
We transform dependent variable into binary vector.
pima <- PimaIndiansDiabetes
pima$diabetes <- ifelse(pima$diabetes == "pos", 1, 0)
We fit 2 models: glm and svm.
model_glm <- glm(diabetes~., data = pima, family = binomial)
library(e1071)
model_svm <- svm(diabetes~., data = pima)
First step of auditing is creating modelAudit
object. It’s an object that can be used to audit a model. It wraps up a model with meta-data.
au_glm <- audit(model_glm, data = pima, y = pima$diabetes)
au_svm <- audit(model_svm, data = pima, y = pima$diabetes, label = "svm")
modelAudit
object can be used for plotting charts.
plotROC(au_glm, au_svm)
plotLIFT(au_glm, au_svm)
Other methods and plots are described in vignettes: