imputeTS: Time Series Missing Value Imputation

Imputation (replacement) of missing values in univariate time series. Offers several imputation functions and missing data plots. Available imputation algorithms include: 'Mean', 'LOCF', 'Interpolation', 'Moving Average', 'Seasonal Decomposition', 'Kalman Smoothing on Structural Time Series models', 'Kalman Smoothing on ARIMA models'.

Version: 2.7
Depends: R (≥ 3.0.1)
Imports: stats, stinepack, graphics, grDevices, forecast, magrittr, Rcpp
LinkingTo: Rcpp
Suggests: testthat, utils, zoo, timeSeries, tis, xts
Published: 2018-06-20
Author: Steffen Moritz ORCID iD [aut, cre, cph]
Maintainer: Steffen Moritz <steffen.moritz10 at gmail.com>
BugReports: https://github.com/SteffenMoritz/imputeTS/issues
License: GPL-3
URL: https://github.com/SteffenMoritz/imputeTS
NeedsCompilation: yes
Citation: imputeTS citation info
Materials: README NEWS
In views: TimeSeries
CRAN checks: imputeTS results

Downloads:

Reference manual: imputeTS.pdf
Vignettes: imputeTS: Time Series Missing Value Imputation in R
Package source: imputeTS_2.7.tar.gz
Windows binaries: r-devel: imputeTS_2.7.zip, r-release: imputeTS_2.7.zip, r-oldrel: imputeTS_2.7.zip
OS X binaries: r-release: imputeTS_2.7.tgz, r-oldrel: imputeTS_2.7.tgz
Old sources: imputeTS archive

Reverse dependencies:

Reverse imports: hpiR, imputeTestbench
Reverse suggests: baytrends, naniar

Linking:

Please use the canonical form https://CRAN.R-project.org/package=imputeTS to link to this page.