Provides an efficient implementation of univariate local polynomial kernel density estimators that can handle bounded and discrete data. See Geenens (2014) <arXiv:1303.4121>, Geenens and Wang (2018) <arXiv:1602.04862>, Nagler (2018a) <arXiv:1704.07457>, Nagler (2018b) <arXiv:1705.05431>.
Version: | 0.2.1 |
Imports: | cctools, graphics, Rcpp, qrng, stats, utils |
LinkingTo: | BH, Rcpp, RcppEigen |
Suggests: | testthat |
Published: | 2018-05-28 |
Author: | Thomas Nagler [aut, cre], Thibault Vatter [aut] |
Maintainer: | Thomas Nagler <mail at tnagler.com> |
BugReports: | https://github.com/tnagler/kde1d/issues |
License: | MIT + file LICENSE |
URL: | https://github.com/tnagler/kde1d |
NeedsCompilation: | yes |
SystemRequirements: | C++11 |
Materials: | README NEWS |
CRAN checks: | kde1d results |
Reference manual: | kde1d.pdf |
Package source: | kde1d_0.2.1.tar.gz |
Windows binaries: | r-devel: kde1d_0.2.1.zip, r-release: kde1d_0.2.1.zip, r-oldrel: kde1d_0.2.1.zip |
OS X binaries: | r-release: kde1d_0.2.1.tgz, r-oldrel: kde1d_0.2.1.tgz |
Old sources: | kde1d archive |
Reverse imports: | rvinecopulib, vinereg |
Please use the canonical form https://CRAN.R-project.org/package=kde1d to link to this page.