Package ‘gWidgetsRGtk2’

March 1, 2018
Version 0.0-86
Title Toolkit Implementation of gWidgets for RGtk2
Author Michael Lawrence, John Verzani
Maintainer John Verzani <jverzani@gmail.com>

Depends methods, grDevices, utils, graphics, RGtk2, gWidgets,
cairoDevice

Enhances RGtk2Extras

Description Port of the gWidgets API to the RGtk2 toolkit.
License GPL (>=2)

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2018-03-01 17:38:49 UTC
RoxygenNote 6.0.1

R topics documented:

gWidgetsRGtk2-package
as.gWidgetsRGtk2 e
gdfedit
gWidgetsRGtk2-misc

Index

2 gWidgetsRGtk2-package

gWidgetsRGtk2-package Toolkit implementation of gWidgets for RGtk2

Description

Port of gWidgets API to RGtk2

Details

This package allows the gWidgets API to use the RGtk2 package allowing the use of the GTK li-
braries within R. The documentation for the functions in this package are contained in the gWidgets
package.

As gWidgets is meant to be multi-toolkit, this file documents differences from the API, as defined
by the man pages of the gWidgets package.

Containers:

If using a ggraphics device, one should call gwindow with the argument visible=FALSE then after
the device is added call the visible<- method to show the window.

To access the underlying gtk container from a gframe object one uses getToolkitWidget (obj)$getParent ()

The gnotebook changed handler has component pageno to indicate the newly selected page number,
as the svalue method returns the page before the change.

Widgets:

The gbutton constructor can not be called before gWidgetsRGtk2 is loaded. This means that an
initial call like gbutton(”label”, cont=gwindow()) won’t work. Instead, either load directly
gWidgetsRGtk2 (not just gWidgets) or create another widget, like a top-level window. Something
similar is the case for the gdfedit widget.

The gradio widget can now have its items shortened or lengthened via [<-.

For the data frame viewer gtable when no filtering is requested — the default — the column headers
can be clicked to sort the values. Setting the index to 0 will clear the selection.

In the data frame editor gdf the subset option only works if the column names have not been
changed. One can suppress the creation of keyboard navigation and the right click popup on the
column headers. The hiddern argument diy (for do it yourself) if left empty will place in both. A
value of "suppress.key” or "suppress.popup” (or both) will suppress the respective handler.

The gaction constructor produces action objects. The enabled<- method can be used to set their
sensitivity. The objects can be used with gbutton through the action argument, and in the lists
defining menubars and toolbars. The key.accel argument (for assigning a keyboard accelerator)
of the constructor is ignored for now. The tooltip is OS sensitive, as it depends on the event loop

gWidgetsRGtk2-package 3
implementation.

The gtoolbar list can have components that are a) lists with a handler componented, b) lists with
a separator component, ¢) gaction instances d) gWidgets, in which case the widget appears in the
toolbar. The latter is not portable to other gWidgets implementations.

The gvarbrowser constructor depends on a variable knownTypes. A default is provided in the pack-
age, but this can be overridden by a) providing a hidden argument knownTypes to the constructor or
b) setting an option knownTypes. In each case this is a named list whose components are character
vectors listing classes of a similar nature. For example, the default value for knownTypes included

n on nons non

"data sets"= c("numeric”,"logical”,"factor”,"character”,”integer"”, "data.frame"”,"matrix"”,6"list"”,

’

The function used to map a class to an icon is by default getStockIconFromClass. This can
be changed by assigning a function to the option gWidgetsStockIconFromClass. This function
should take a class and return a stock icon name. (The class passed is the first value only.)

The gfile constructor has the argument multiple, which if TRUE will allow for multiple selec-
tions of files. This feature should be merged into the gWidgets API, but for now is passed in via

The ggraphics constructor provides a means to embed a graphics window inside a GUI. A right
mouse popup allows one to copy the graphic to the clipboard or save it to a file. The different file
types are limited by the function gdkPixbufSave whose manual page states that jpg, png, ico and
bmp are permissable.

A few quirks exist.

1. Drawing a graphic too soon may result in a message about plot.margins too small. This
comes from trying to draw the first graphic before the window is fully realized.

One workaround is to initially set the window not visible then when the GUI is done, make the
window visible. That s, try: w <- gwindow(visible=FALSE); ggraphics(cont=w); visible(w) <- TRUE; hist(

2. When there are multiple devices, the standard means of setting a device via dev.set are
supplemented by mouse handlers. Clicking in the graphics window sets the window as the
current device.

3. The handler for addHandlerClicked responds to a mouse click. The components x and y
give the coordinates in "usr" coordinates.

4. The handler for addHandlerChanged responds to the "rubber-banding" effect that comes from
trying to trace out a rectangle in the graphic window. The components x and y give the
coordinates in "usr" coordinates. (These each have two values.) The functions grconvertX
and grconvertY can convert to other coordinate systems for you. See the ggraphics help
page for an example of how this can be used to update a data frame.

The gbasicdialog constructor can be used both ways. The hidden argument buttons can take
values ok, yes, cancel, close, no, with a default of c("ok"”, "cancel”).

Methods:

The font method is not implemented.

4 as.gWidgetsRGtk2

For widgets which allow markup (gframe, glabel) PANGO markup is used. This is not HTML,
but is similar to basic HTML.

gWidgetsRGtk2 and the RGtk2 package:

The RGtk2 package is imported only so its namespace, which is large, is not loaded by default. To
access its functions, load the package.

The RGtk2 package and gWidgetsRGtk2 can be used together in the following ways. First, an
RGtk2 object can be added to a gWidgetsRGtk2 through the add method of the container. This
works for most objects. If you find one that doesn’t work, simply place it inside a gtkHBox container,
then add that container. Second, a gWidgetsRGtk2 object can be added to to a RGtk2 container
by adding the return value of the getToolkitWidget method of the object. Again, this should
work, but if not, the gWidgetsRGtk2 can be added to a ggroup container first. In either case,
the gWidgetsRGtk2 object should not be previsously attached to a container, so in particular the
constructor should be called with its container argument as NULL (the default).

Author(s)

Michael Lawrence, John Verzani

Maintainer: John Verzani <gwidgetsrgtk @ gmail.com>

See Also

gWidgets

as.gWidgetsRGtk2 Coerce an RGtk2 object into a gWidgetsRGtk2 object

Description

This function coerces an RGtk2 object into a gWidgetsRGtk2 object, thereby allowing most of the
methods to work on the new object.

Usage
as.gWidgetsRGtk2(widget, ...)
Arguments
widget An object of class RGtkObject

Ignored here

as.gWidgetsRGtk2 5

Details

Many RGtk2 widgets can be coerced into gWidgetsRGtk2 objects. This allows the method of
gWidgets to be called. The example shows how one can use glade to layout a dialog, and use
gWidget methods for the handlers.

Value

Returns a gWidgetsRGtk2 object. (This is not a gWidgets object, so there may be some oddities

Examples

Not run:

This requires glade libraries to be installed before compiling RGtk2
options("guiToolkit"="RGtk2")

library(RGtk2)

library(gWidgets)

library(gWidgetsRGtk2)

gladeFile <- system.file("examples/t.test.glade"”,package="gWidgetsRGtk2")
GUI <- gladeXMLNew("t.test.glade")

w <- GUI$GetWidget("window1")
w$Show () # show
win <- as.gWidgetsRGtk2(w)

gladeXMLGetWidgetNames <- function(obj) {
sapply(obj$GetWidgetPrefix(""),gladeGetWidgetName)
3

gladeXMLGetgWidgetsRGtk2 <- function(obj) {
nms <- obj$GetWidgetNames()
widgets <- sapply(nms, function(i) obj$GetWidget(i))
widgets <- sapply(widgets, as.gWidgetsRGtk2)
return(widgets)

3
1 <- GUI$GetgWidgetsRGtk2()

val names have similar form
valNames <- grep("Val$",GUI$GetWidgetNames())
defHandler <- function(...) {
Ist <- list()
args <- c("x","y", "mu","alt","var.equal”,"paired”,"conf.level”)
for(i in args) {
key <- paste(i,"Val",sep="")
widget <- 1[[keyl]
val <- svalue(widget)
if(!is.null(val) && val !="")
1st[[i]] <- val
}
if(lis.null(1st$x)) {
cmd <- "t.test(”

6 gdfedit

arglList <- c()
for(i in names(lst)) {

arglist <- c(arglList,paste(i,”=",1st[[i]], sep=""))
3
cmd <- paste(cmd, paste(arglList,collapse=", "),")",sep="")
print(cmd)

}

3
Add handler to each widget

sapply(valNames, function(i) addHandlerChanged(1[[i]],handler=defHandler))
put handler on dismiss button
addHandlerChanged(1[['dismiss']], handler = function(h,...) dispose(win))

End(Not run)

gdfedit gWidgets interface for RGtk2Extras data editor widget

Description

An alternative widget for editing a data frame using the RGtk2DfEdit package

Usage
gdfedit(items = NULL,
name = paste(deparse(substitute(items)), "1", sep="."),
container = NULL, ..., toolkit = guiToolkit())
Arguments
items data frame to be edited
name Name of data frame to save value to
container An optional container to attach widget to
Can be used to overide default colors.
toolkit Which GUI toolkit to use
Details

The gdf widget is used for editing data frames, but does not have the most natural keyboard han-
dling. The RGtk2Extras package by Tom Taverner provides a more powerful and easier to use
interface for editing data frame, and this wraps that widget into gWidgetsRGtk2.

The addHandlerColumnClicked function can be used to add a handler to the event when a column
header is clicked. The component of the first argument column.no contains the column number.

This widget is a bit different from the others as it is not imported from gWidgets. As such, it won’t
exist until this gWidgetsRGtk2 package is loaded. In practical terms, you need to realize a widget
before this one can be realized.

gWidgetsRGtk2-misc 7

See Also

gtable

Examples

Not run:

w<-gwindow()
g<-ggroup(cont=w)
df<-gdfedit(iris, cont=g)

check names
names (df)

names (df)[1]<-"new"
rownames (df)
colnames(df)

check [
df[,]
df[1,]
df[,1]

no [<- function
check dim stuff
dim(df)

length(df)

handler
addHandlerColumnClicked(df, handler<-function(h,...) {

print(h$column.no)

b

End(Not run)

gWidgetsRGtk2-misc Miscellaneous functions in gWidgetsRGtk

Description

These functions are hardly worth documenting. They are used by pmg, but are not part of the
gWidgets API, nor meant for general consumption.

Index

xTopic interface
as.gWidgetsRGtk2, 4
gdfedit, 6
gWidgetsRGtk2-misc, 7
xTopic package
gWidgetsRGtk2-package, 2
.gdfedit (gdfedit), 6
.stockIconFromClass,guiWidgetsToolkitRGtk2-method
(gWidgetsRGtk2-misc), 7
.stockIconFromClass-methods
(gWidgetsRGtk2-misc), 7
.stockIconFromObject,guiWidgetsToolkitRGtk2-method
(gWidgetsRGtk2-misc), 7
.stockIconFromObject-methods
(gWidgetsRGtk2-misc), 7

as.gWidgetsRGtk2, 4

gdfedit, 6

gWidgetsRGtk2 (gWidgetsRGtk2-package), 2
gWidgetsRGtk2-misc, 7
gWidgetsRGtk2-package, 2

Paste (gWidgetsRGtk2-misc), 7
rpel (gWidgetsRGtk2-misc), 7

stockIconFromClass
(gWidgetsRGtk2-misc), 7

stockIconFromObject
(gWidgetsRGtk2-misc), 7

str1 (gWidgetsRGtk2-misc), 7

str2 (gWidgetsRGtk2-misc), 7

stripWhiteSpace (gWidgetsRGtk2-misc), 7

Timestamp (gWidgetsRGtk2-misc), 7
Timestamp<- (gWidgetsRGtk2-misc), 7

untaintName (gWidgetsRGtk2-misc), 7

	gWidgetsRGtk2-package
	as.gWidgetsRGtk2
	gdfedit
	gWidgetsRGtk2-misc
	Index

