Package ‘classiFunc’

April 16, 2018
Type Package
Title Classification of Functional Data
Version 0.1.1

Date 2018-03-29

URL https://github.com/maierhofert/classiFunc

Description Efficient implementation of k-
nearest neighbor estimation and kernel estimation for functional data classification.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

Depends R (>=2.10)

Suggests testthat, knitr, rmarkdown, parallelMap

Imports BBmisc (>= 1.11), checkmate (>= 1.8.2), dtw, fda, fda.usc,
fdasrvf, proxy, rucrdtw, stats, zoo

VignetteBuilder knitr
NeedsCompilation no

Author Thomas Maierhofer [aut, cre],
Karen Fuchs [ctb],
Florian Pfisterer [aut]

Maintainer Thomas Maierhofer <thomasjmaierhofer@gmail.com>
Repository CRAN
Date/Publication 2018-04-16 17:15:34 UTC

R topics documented:

ArrowHead
BeetleFly e e
classiFunc e

https://github.com/maierhofert/classiFunc

2 ArrowHead

classiKernel e 4
classiKnn e e e e e 7
computeDistMat 9
DTI . . . e 12
DT original e 13
fdataTransform 14
Growth e e e e e 14
Growth_irregular L 15
kerChoices e e e 15
metricChoices e e 16
parallelComputeDistMat 16
Phoneme e e e e e 18
predict.classiKernel 19
predict.classiKnno oL 19

Index 21

ArrowHead The shape of arrow heads.
Description

A dataset containing the outline of arrow heads as functional covariable. This is a subset of the
"ArrowHead" data set of the UCR TSC repository.
Usage

ArrowHead

Format

An object of class data. frame with 100 rows and 84 columns.

Details

The arrowhead data consists of outlines of the images of arrowheads. The shapes of the projectile
points are converted into a time series using the angle-based method. The classification of projectile
points is an important topic in anthropology. The classes are based on shape distinctions such as the
presence and location of a notch in the arrow. The problem in the repository is a length normalized
version of that used in YeO9shapelets. The three classes are called "Avonlea", "Clovis" and "Mix".

Format A data frame with 100 rows (=observations) and 84 variables

col 1:83 shape of a projectile as functional observation.

target encoding the class of the projectile.

Source

http://timeseriesclassification.com/description.php?Dataset=ArrowHead

http://timeseriesclassification.com/description.php?Dataset=ArrowHead

BeetleFly 3

BeetleFly Beetle/Fly Data

Description

Classification of Beetle and Fly outlines.

Usage
BeetleFly

Format

An object of class data. frame with 40 rows and 513 columns.

Details

MPEG-7 CE Shape-1 Part B is a database of binary images developed for testing MPEG-7 shape
descriptors, and is available free online (http://www.dabi.temple.edu/~shape/MPEG7/dataset.html).
It is used for testing contour/image and skeleton-based descriptors. Classes of images vary broadly,
and include classes that are similar in shape to one another. There are 20 instances of each class,
and 60 classes in total. We have extracted the outlines of these images and mapped them into 1-D
series of distances to the centre. Beetle/Fly is the problem of distinguishing between an outline of a
beetle and a fly

Format A data frame made up of

att0 to att511 Functional observation of outline.

target Factor encoding if outline is from a beetle (1) or a fly (2).
References

Hills J, Lines J, Baranauskas E, Mapp J, Bagnall A (2014). "Classification of time series by shapelet
transformation." Data Mining and Knowledge Discovery, 28(4), 851-881. URL http://timeseriesclassification.com/descriptio

classiFunc The classiFunc package

Description

This package implements methods for functional data classification. The main functions of this
package are classiKnn, a k nearest neighbor estimator for functional data, and classiKernel,
a kernel estimator for functional data. The package uses efficiently implemented semimetrics to
create the distance matrix of the functional observations in the function computeDistMat. Currently
supported distance measures are all methods implemented in dist and all semimetrics suggested
in Fuchs et al. (2015). Additionally, all (semi-)metrics can be used on a derivative of arbitrary
order of the functional observations. This is a new package, please report all bugs and issues at
https://github.com/maierhofert/classiFunc.

https://github.com/maierhofert/classiFunc

4 classiKernel
Author(s)
Thomas Maierhofer Florian Pfisterer
References
Fuchs, K., J. Gertheiss, and G. Tutz (2015): Nearest neighbor ensembles for functional data with
interpretable feature selection. Chemometrics and Intelligent Laboratory Systems 146, 186 - 197.
classiKernel Create a kernel estimator for functional data classification
Description
Creates an efficient kernel estimator for functional data classification. Currently supported distance
measures are all metrics implemented in dist and all semimetrics suggested in Fuchs et al. (2015).
Additionally, all (semi-)metrics can be used on a derivative of arbitrary order of the functional
observations. For kernel functions all kernels implemented in fda.usc are available as well as
custom kernel functions.
Usage
classiKernel(classes, fdata, grid = 1:ncol(fdata), h = 1, metric = "L2",
ker = "Ker.norm”, nderiv = @L, derived = FALSE,
deriv.method = "base.diff"”, custom.metric = function(x, y, ...) {
return(sqrt(sum((x - y)*2))) 3}, custom.ker = function(u) {
return(dnorm(u)) 3}, ...)
Arguments
classes [factor(nrow(fdata))]

fdata

grid

metric

factor of length nrow(fdata) containing the classes of the observations.

[matrix]
matrix containing the functional observations as rows.

[numeric(ncol(fdata))]
numeric vector of length ncol(fdata) containing the grid on which the func-
tional observations were evaluated.

[numeric(1)]

controls the bandwidth of the kernel function. All kernel functions ker should
be implemented to have bandwidth = 1. The bandwidth is controlled via h by
using K(x) = ker(x/h) as the kernel function.

[character(1)]

character string specifying the (semi-)metric to be used. For a an overview of
what is available see the method argument in computeDistMat. For a full list
execute metricChoices().

classiKernel

ker

nderiv

derived

deriv.method

custom.metric

custom.ker

Value

[numeric(1)]

character string describing the kernel function to use. Available are amongst

others all kernel functions from Kernel. For the full list execute kerChoices().

The usage of customized kernel function is symbolized by ker = "custom.ker".
The customized function can be specified in custom.ker

[integer(1)]
order of derivation on which the metric shall be computed. The default is OL.

[logical(1)]

Is the data given in fdata already derived? Default is set to FALSE, which
will lead to numerical derivation if nderiv >= 1L by applying deriv.fd on
a Data2fd representation of fdata.

[character(1)]

character indicate which method should be used for derivation. Currently im-
plemented are "base.diff", the default, and "fda.deriv.fd". "base.diff"
uses the method base: :diff for equidistant measures without missing values,
which is faster than transforming the data into the class fd and deriving this
using fda::deriv.fd. The second variant implies smoothing, which can be
preferable for calculating high order derivatives.

[function(x, vy, ...)]

only used if deriv.method = "custom.method”. A function of functional
observations x and y returning their distance. The default is the L2 distance.
See how to implement your distance function in dist.

[function(u)]

customized kernel function. This has to be a function with exactly one parameter
u, returning the numeric value of the kernel function ker (u). This function is
only used if ker == "custom.ker". The bandwidth should be constantly equal
to 1 and is controlled via h.

further arguments to and from other methods. Hand over additional arguments to
computeDistMat, usually additional arguments for the specified (semi-)metric.
Also, if deriv.method == "fda.deriv.fd" or fdata is not observed on a
regular grid, additional arguments to fdataTransform can be specified which
will be passed on to Data2fd.

classiKernel returns an object of class 'classiKernel'. This is a list containing at least the
following components:

classes afactor of length nrow(fdata) coding the response of the training data set.

fdata the raw functional data as a matrix with the individual observations as rows.

proc.fdata the preprocessed data (missing values interpolated, derived and evenly spaced). This
data is this.fdataTransform(fdata). See this.fdataTransform for more details.

grid numeric vector containing the grid on which fdata is observed)

h numeric value giving the bandwidth to be used in the kernel function.

ker character encoding the kernel function to use.

metric character string coding the distance metric to be used in computeDistMat.

6 classiKernel

nderiv integer giving the order of derivation that is applied to fdata before computing the distances
between the observations.

this.fdataTransform preprocessing function taking new data as a matrix. It is used to transform
fdatainto proc. fdata and is required to preprocess new data in order to predict it. This func-
tion ensures, that preprocessing (derivation, respacing and interpolation of missing values) is
done in the exact same way for the original training data set and future (test) data sets.

call the original function call.

References

Fuchs, K., J. Gertheiss, and G. Tutz (2015): Nearest neighbor ensembles for functional data with
interpretable feature selection. Chemometrics and Intelligent Laboratory Systems 146, 186 - 197.

See Also

predict.classiKernel

Examples

How to implement your own kernel function
data("ArrowHead")
classes = ArrowHead[, "target”]

set.seed(123)
train_inds = sample(1:nrow(ArrowHead), size = 0.8 * nrow(ArrowHead), replace = FALSE)
test_inds = (1:nrow(ArrowHead))[!(1:nrow(ArrowHead)) %in% train_inds]

ArrowHead = ArrowHead[, !colnames(ArrowHead) == "target"]

custom kernel

myTriangularKernel = function(u) {
return((1 - abs(u)) * (abs(u) < 1))

3

create the model
mod1 = classiKernel(classes = classes[train_inds], fdata = ArrowHead[train_inds,],
ker = "custom.ker”, h = 2, custom.ker = myTriangularKernel)

calculate the model predictions
predl = predict(mod1l, newdata = ArrowHead[test_inds,], predict.type = "response”)

prediction accuracy
mean(predl == classes[test_inds])

create another model using an existing kernel function
mod2 = classiKernel(classes = classes[train_inds], fdata = ArrowHead[train_inds,],
ker = "Ker.tri", h = 2)

calculate the model predictions
pred2 = predict(modl, newdata = ArrowHead[test_inds,], predict.type = "response”)

classiKnn 7

prediction accuracy

mean(pred2 == classes[test_inds])

Not run:

Parallelize across 2 CPU's

library(parallelMap)

parallelStartSocket(2L) # parallelStartMulticore for Linux

predict(mod1l, newdata = fdata[test_inds,], predict.type = "prob”, parallel = TRUE, batches = 2L)
parallelStop()

End(Not run)

classiKnn Create a knn estimator for functional data classification.

Description

Creates an efficient k nearest neighbor estimator for functional data classification. Currently sup-
ported distance measures are all metrics implemented in dist and all semimetrics suggested in
Fuchs et al. (2015). Additionally, all (semi-)metrics can be used on an arbitrary order of derivation.

Usage

classiknn(classes, fdata, grid = 1:ncol(fdata), knn = 1L, metric = "L2",
nderiv = QL, derived = FALSE, deriv.method = "base.diff",

custom.metric = function(x, y, ...) { return(sgrt(sum((x - y)*2))) 3,
)
Arguments
classes [factor(nrow(fdata))]

factor of length nrow(fdata) containing the classes of the observations.

fdata [matrix]
matrix containing the functional observations as rows.

grid [numeric(ncol(fdata))]
numeric vector of length ncol(fdata) containing the grid on which the func-
tional observations were evaluated.

knn [integer(1)]
number of nearest neighbors to use in the k nearest neighbor algorithm.

metric [character(1)]
character string specifying the (semi-)metric to be used. For a an overview of
what is available see the method argument in computeDistMat. For a full list
execute metricChoices().

nderiv [integer(1)]
order of derivation on which the metric shall be computed. The default is OL.

8 classiKnn

derived [logical(1)]
Is the data given in fdata already derived? Default is set to FALSE, which
will lead to numerical derivation if nderiv >= 1L by applying deriv.fd on
a Data2fd representation of fdata.

deriv.method [character(1)]
character indicate which method should be used for derivation. Currently im-
plemented are "base.diff", the default, and "fda.deriv.fd". "base.diff"
uses the method base: :diff for equidistant measures without missing values,
which is faster than transforming the data into the class fd and deriving this
using fda::deriv.fd. The second variant implies smoothing, which can be
preferable for calculating high order derivatives.

custom.metric [function(x, y, ...)]
only used if deriv.method = "custom.method”. A function of functional
observations x and y returning their distance. The default is the L2 distance.
See how to implement your distance function in dist.

further arguments to and from other methods. Hand over additional arguments to
computeDistMat, usually additional arguments for the specified (semi-)metric.
Also, if deriv.method == "fda.deriv.fd" or fdata is not observed on a
regular grid, additional arguments to fdataTransform can be specified which
will be passed on to Data2fd.

Value

classiKnn returns an object of class "classiKnn". This is a list containing at least the following
components:

call the original function call.

classes afactor of length nrow(fdata) coding the response of the training data set.

fdata the raw functional data as a matrix with the individual observations as rows.

grid numeric vector containing the grid on which fdata is observed)

proc.fdata the preprocessed data (missing values interpolated, derived and evenly spaced). This
data is this.fdataTransform(fdata). See this.fdataTransform for more details.

knn integer coding the number of nearest neighbors used in the k nearest neighbor classification
algorithm.

metric character string coding the distance metric to be used in computeDistMat.

nderiv integer giving the order of derivation that is applied to fdata before computing the distances
between the observations.

this.fdataTransform preprocessing function taking new data as a matrix. It is used to transform
fdatainto proc. fdata and is required to preprocess new data in order to predict it. This func-
tion ensures, that preprocessing (derivation, respacing and interpolation of missing values) is
done in the exact same way for the original training data set and future (test) data sets.

References

Fuchs, K., J. Gertheiss, and G. Tutz (2015): Nearest neighbor ensembles for functional data with
interpretable feature selection. Chemometrics and Intelligent Laboratory Systems 146, 186 - 197.

computeDistMat 9

See Also

predict.classiKnn

Examples

Classification of the Phoneme data
data(Phoneme)
classes = Phoneme[, "target"]

set.seed(123)

Use 80% of data as training set and 20% as test set

train_inds = sample(1:nrow(Phoneme), size = 0.8 * nrow(Phoneme), replace = FALSE)
test_inds = (1:nrow(Phoneme))[!(1:nrow(Phoneme)) %in% train_inds]

create functional data as matrix with observations as rows
fdata = Phonemel[, !colnames(Phoneme) == "target"]

create k = 3 nearest neighbors classifier with L2 distance (default) of the

first order derivative of the data

mod = classikKnn(classes = classes[train_inds], fdata = fdata[train_inds,],
nderiv = 1L, knn = 3L)

predict the model for the test set
pred = predict(mod, newdata = fdatal[test_inds,], predict.type = "prob")

Not run:

Parallelize across 2 CPU's

library(parallelMap)

parallelStartSocket(cpus = 2L) # parallelStartMulticore(cpus = 2L) for Linux

predict(mod, newdata = fdataltest_inds,], predict.type = "prob”, parallel = TRUE, batches = 2L)
parallelStop()

End(Not run)

computeDistMat Compute a distance matrix for functional observations

Description

This mainly internal function offers a unified framework to access the dist function from the proxy
package and additional (semi-)metrics.

Usage

computeDistMat(x, y = NULL, method = "Euclidean”, dmin = @, dmax = 1,
dminl = @, dmax1 = 1, dmin2 = @, dmax2 = 1, t1 =0, t2 =1,
.poi = seq(@, 1, length.out = ncol(x)), custom.metric = function(x, y, lp
=2, ... A return(sum(abs(x - y)*1p)*(1/1p)) 3}, a = NULL, b = NULL,
¢ = NULL, lambda =0, ...)

10 computeDistMat

Arguments

X [matrix]
matrix containing the functional observations as rows.

y [matrix]
see x. The default NULL uses y = x.

method [character(1)]
character string describing the distance function to be used. For a full list execute
metricChoices().

Euclidean equals Lp with p = 2. This is the default.

Lp, Minkowski the distance for an Lp-space, takes p as an additional argument
in....

Manhattan equals Lp withp = 1.

supremum, max, maximum equals Lp with p = Inf. The supremal pointwise
difference between the curves.

and ... all other available measures for dist.

shortEuclidean Euclidean distance on a limited part of the domain. Addi-
tional arguments dmin and dmax can be specified in . . ., giving the position
of the first and the last point to use of an evenly spaced sequence from @ to
1 of length length(grid). The default values are dmin = o and dmax = 1,
which results in the Euclidean distance on the entire domain.

mean the absolute similarity of the overall mean values of the observations.

relAreas the difference of the relation of two areas on parts of the domain
given by dmin1 to dmax1 and dmin2 to dmax2. They are defined analogously
to dmin and dmax and take the same default values.

jump the similarity of jump heights at points t1 and t2,i.e. x[t1 * length(x)] - x[t2 * length(x)]
for every functional observation x. The points t1 and t2 are the positions in
an evenly spaced sequence from @ to 1 of length length(grid) for which
to compare the jump height. The default values are t1 = @and t2 = 1.

globMax the difference of the curves global maxima.

globMin the difference of the curves global minima.

points the mean absolute differences at certain observation points .poi, also
called "points of impact". These are specified as a vector .poi of arbitrary
length with values between @ and 1, encoding the the index of the points of
observations. The default value is .poi = seq(@, 1, length.out = length(grid)),
which results in the Manhattan distance.

custom.metric your own semimetric will be used. Specify your own distance
function in the argument custom.metric.

amplitudeDistance,phaseDistance The amplitude distance or phase distance
as described in Srivastava, A. and E. P. Klassen (2016). Functional and
Shape Data Analysis. Springer.

FisherRao, elasticMetric the elastic distance of the square root velocity of
the curves as described in Srivastava and Klassen (2016). This equates to
the Fisher Rao metric.

elasticDistance weighted mean of the amplitude and the phase distance us-
ing the implementation in elastic.distance. Additional arguments are

computeDistMat 11

the numeric the penalization parameters a,b, c for the amplitude distance
(a*2) and the phase distance (b”*2). The default valuesarea = 1/2, b = 1.
Alternatively c denotes the ratio of 2*a and b. 1ambda is the additional pe-
nalization parameter for the warping allowed before calculating the elastic
distance. The default is 1.

rucrdtw, rucred Dynamic Time Warping Distance and Euclidean Distance
from package rucrdtw. Implemented in Boersch-Supan (2016) and origi-
nally described in Rakthanmanon et al. (2012).

dmin, dmax, dmin1, dmax1, dmin2, dmax2

[integer(1)]
encode the indices used to define subspaces for method %in% c("shortEuclidean”, "relAreas")
as numeric values between 0 and 1, where O encodes grid[1] and 1 encodes
grid[length(grid)].
t1, t2 [numeric(1)]
encode the position of the points for which to compare the jump heights in
method = "jump" as numeric values between O and 1, see dmin.
.poi [numeric(1 to ncol(x))]
numeric vector of length arbitrary length taking numeric values between 0 and
1, denoting the position of the points of interest for method = "points”. The

default value is .poi = seq(@, 1, length.out = length(grid)), which
results in the Manhattan distance.

custom.metric [function(x, y, ...)]
a function specifying how to compute the distance between two functional ob-
servations (= numeric vectors of the same length) x and y. It can handle addi-
tional arguments in The default is the Euclidean distance (equals Minkwoski
distance with 1p = 2). Used for method = "custom.metric".

a, b, c [numeric(1)]
weights of the amplitude distance (a) and the phase distance (b) in a semimetric
that combines them by addition. Used for method == 'elasticDistance'.

lambda [numeric(1)]
penalization parameter for the warping allowed before calculating the elastic
distance. Default value is 0. Large values imply less (no) warping, small values
imply more warping. Used for method %in% c('elastic', 'SRV').

additional parameters to the (semi-)metrics.

Value

a matrix of dimensions nrow(x) by nrow(y) containing the distances of the functional observations
contained in x and y, if y is specified. Otherwise a matrix containing the distances of all functional
observations within x to each other.

References

Boersch-Supan (2016). rucrdtw: Fast time series subsequence search in R. The Journal of Open
Source Software URL http://doi.org/10.21105/joss.00100

Fuchs, K., J. Gertheiss, and G. Tutz (2015): Nearest neighbor ensembles for functional data with
interpretable feature selection. Chemometrics and Intelligent Laboratory Systems 146, 186 - 197.

12 DTI

Rakthanmanon, Thanawin, et al. "Searching and mining trillions of time series subsequences un-
der dynamic time warping." Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2012.

Srivastava, A. and E. P. Klassen (2016). Functional and Shape Data Analysis. Springer.

DTI Diffusion Tensor Imaging: tract profiles and outcomes

Description

Fractional anisotropy (FA) tract profiles for the corpus callosum (cca) and the right corticospinal
tract (rcst). Accompanying the tract profiles are the subject ID numbers, visit number, total number
of scans, multiple sclerosis case status and Paced Auditory Serial Addition Test (pasat) score.

Format
A data frame made up of
cca A 382 x 93 matrix of fractional anisotropy tract profiles from the corpus callosum. Missing
values were imputed using splines;

rest A 382 x 55 matrix of fractional anisotropy tract profiles from the right corticospinal tract.
Missing values were imputed using splines;

ID Numeric vector of subject ID numbers;

visit Numeric vector of the subject-specific visit numbers;

visit.time Numeric vector of the subject-specific visit time, measured in days since first visit;
Nscans Numeric vector indicating the total number of visits for each subject;

case Numeric vector of multiple sclerosis case status: O - healthy control, 1 - MS case;

sex factor variable indicated subject’s sex;

pasat Numeric vector containing the PASAT score at each visit.

Details
If you use this data as an example in written work, please include the following acknowledgment:
“The MRI/DTI data were collected at Johns Hopkins University and the Kennedy-Krieger Institute"

Data and description was copied from the refund package.

References

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized Functional
Regression. Journal of Computational and Graphical Statistics, 20, 830 - 851.

Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2010). Longitudinal Penalized Func-
tional Regression for Cognitive Outcomes on Neuronal Tract Measurements. Journal of the Royal
Statistical Society: Series C, 61, 453 - 469.

DTI original 13

DTI_original Diffusion Tensor Imaging: tract profiles and outcomes

Description

Fractional anisotropy (FA) tract profiles for the corpus callosum (cca) and the right corticospinal
tract (rcst). Accompanying the tract profiles are the subject ID numbers, visit number, total number
of scans, multiple sclerosis case status and Paced Auditory Serial Addition Test (pasat) score.

Format

A data frame made up of
cca A 382 x 93 matrix of fractional anisotropy tract profiles from the corpus callosum containing
missing values;

rest A 382 x 55 matrix of fractional anisotropy tract profiles from the right corticospinal tract
containing missing values;

ID Numeric vector of subject ID numbers;

visit Numeric vector of the subject-specific visit numbers;

visit.time Numeric vector of the subject-specific visit time, measured in days since first visit;
Nscans Numeric vector indicating the total number of visits for each subject;

case Numeric vector of multiple sclerosis case status: 0 - healthy control, 1 - MS case;

sex factor variable indicated subject’s sex;

pasat Numeric vector containing the PASAT score at each visit.

Details

If you use this data as an example in written work, please include the following acknowledgment:
“The MRI/DTI data were collected at Johns Hopkins University and the Kennedy-Krieger Institute"

Data and description was copied from the refund package.

References

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized Functional
Regression. Journal of Computational and Graphical Statistics, 20, 830 - 851.

Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2010). Longitudinal Penalized Func-
tional Regression for Cognitive Outcomes on Neuronal Tract Measurements. Journal of the Royal
Statistical Society: Series C, 61, 453 - 469.

14 Growth

fdataTransform Create a preprocessing pipeline function

Description

Internal function, documented due to the importance of its concept. Creates a pipeline function to
do all the preprocessing needed in classiKnn and classiKernel. This is helpful to ensure that the
data preprocessing (imputation of missing values, derivation) is carried out in exactly the same way
for the training and the test set in predict.classiKnn and predict.classiKernel.

Usage

fdataTransform(grid, nderiv, derived, evenly.spaced, no.missing, deriv.method,

)

Arguments

grid, nderiv, derived, evenly.spaced, no.missing, deriv.method
see classiknn
additional arguments to fda::smooth.basis

Value

Pipeline function taking one argument fdata. The returned function carries out all the preprocess-
ing needed for the calling model of class classiKnn.

Growth Berkeley Growth Study Data (regular grid)

Description
A data frame containing the heights of 39 boys and 54 girls from age 1 to 18, the ages at which they
were collected.

Format
A list made up of

ID Factor of length 93 containing the subject IDs
sex Factor encoding the sex of children with values in c(*male®, “‘female“)
height A 93 x 31 matrix giving the height in cm of 93 children at 31 ages

@inheritSection Growth_irregular references @seealso Growth_irregular

Details

Data and description was reformatted from the fda package to be observed on a regular grid in one
year steps.

Growth_irregular 15

Growth_irregular Berkeley Growth Study Data

Description
A data frame containing the heights of 39 boys and 54 girls from age 1 to 18, the ages at which they
were collected.

Format
A list made up of

ID Factor of length 93 containing the subject IDs
sex Factor encoding the sex of children with values in c(*male*, ‘female")
age Numeric vector of length 31 encoding the age at the measurements

height A 93 x 31 matrix giving the height in cm of 93 children at 31 ages

Details

Data and description was reformatted from the fda package.

The ages are not equally spaced, see Growth$age.

References

Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer,
New York.

Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer,
New York, ch. 6.

Tuddenham, R. D., and Snyder, M. M. (1954) "Physical growth of California boys and girls from
birth to age 18", University of California Publications in Child Development, 1, 183-364.

See Also

Growth

kerChoices List the names of all implemented kernel functions

Description
kerChoices is a function returning the names of all kernel functions that are currently implemented
in the classiFunc-package and can be used for the argument ker in classiKernel.

Usage
kerChoices()

16 parallelComputeDistMat

metricChoices List the names of all metrics

Description

metricChoices is a function returning the names of all (semi-)metrics that are currently imple-
mented in the 1ink{classiFunc}-package and can be used for the argument method in computeDistMat
or the argument metric in classikKnn and classiKernel respectively.

Usage
metricChoices(proxy.only = FALSE)

Arguments

proxy.only [logical(1)]
should only the metrics of the proxy package be returned? Defaults to FALSE,
which results in returning the names of all allowed metrics for computeDistMat.

parallelComputeDistMat
Paralleize computing a distance matrix for functional observations

Description

Uses parallelMap to parallelize the computation of the distance matrix. This is done by dividing
the data into batches and computing the distance matrix for each batch. For details on distance
computation see computeDistMat.

Usage
parallelComputeDistMat(x, y = NULL, method = "Euclidean”, batches = 1L,
.2
Arguments
X [matrix]
matrix containing the functional observations as rows.
y [matrix]
see Xx. The default NULL uses y = x.
method [character(1)]
character string describing the distance function to be used. For a full list execute
metricChoices().

Euclidean equals Lp with p = 2. This is the default.

parallelComputeDistMat 17

Lp, Minkowski the distance for an Lp-space, takes p as an additional argument
in....

Manhattan equals Lp withp = 1.

supremum, max, maximum equals Lp with p = Inf. The supremal pointwise
difference between the curves.

and ... all other available measures for dist.
shortEuclidean Euclidean distance on a limited part of the domain. Addi-
tional arguments dmin and dmax can be specified in . . ., giving the position

of the first and the last point to use of an evenly spaced sequence from @ to
1 of length 1length(grid). The default values are dmin = o and dmax = 1,
which results in the Euclidean distance on the entire domain.

mean the absolute similarity of the overall mean values of the observations.

relAreas the difference of the relation of two areas on parts of the domain
given by dmin1 to dmax1 and dmin2 to dmax2. They are defined analogously
to dmin and dmax and take the same default values.

jump the similarity of jump heights at points t1 and t2,i.e. x[t1 * length(x)] - x[t2 * length(x)]
for every functional observation x. The points t1 and t2 are the positions in
an evenly spaced sequence from @ to 1 of length length(grid) for which
to compare the jump height. The default values are t1 = @ and t2 = 1.

globMax the difference of the curves global maxima.

globMin the difference of the curves global minima.

points the mean absolute differences at certain observation points .poi, also
called "points of impact". These are specified as a vector .poi of arbitrary
length with values between @ and 1, encoding the the index of the points of
observations. The default valueis .poi = seq(@, 1, length.out = length(grid)),
which results in the Manhattan distance.

custom.metric your own semimetric will be used. Specify your own distance
function in the argument custom.metric.

amplitudeDistance,phaseDistance The amplitude distance or phase distance
as described in Srivastava, A. and E. P. Klassen (2016). Functional and
Shape Data Analysis. Springer.

FisherRao, elasticMetric the elastic distance of the square root velocity of
the curves as described in Srivastava and Klassen (2016). This equates to
the Fisher Rao metric.

elasticDistance weighted mean of the amplitude and the phase distance us-
ing the implementation in elastic.distance. Additional arguments are
the numeric the penalization parameters a,b,c for the amplitude distance
(a*2) and the phase distance (b*2). The default valuesarea = 1/2, b = 1.
Alternatively c denotes the ratio of 2*a and b. 1ambda is the additional pe-
nalization parameter for the warping allowed before calculating the elastic
distance. The default is 1.

rucrdtw, rucred Dynamic Time Warping Distance and Euclidean Distance
from package rucrdtw. Implemented in Boersch-Supan (2016) and origi-
nally described in Rakthanmanon et al. (2012).

batches [integer(1)]
Number of roughly equal-sized batches to split data into. The distance compu-
tation is then carried out for each batch.

18 Phoneme

additional parameters to the (semi-)metrics.

Value

a matrix of dimensions nrow(x) by nrow(y) containing the distances of the functional observations
contained in x and y, if y is specified. Otherwise a matrix containing the distances of all functional
observations within x to each other.

Phoneme Phonetic Time Series.

Description

A data set containing the audio files of English words.

Usage

Phoneme

Format

An object of class data. frame with 100 rows and 65 columns.

Details

This data set is a subsample of the data used in Hamooni and Mueen (2014). Each series is ex-
tracted from the segmented audio collected from Google Translate, oxforddictionaries.com and the
Merrriam-Webster online dictionary. Each of these sources have different features. Audio files col-
lected from Google translate, Oxford, and Merrriam-Webster dictionaries are recorded at 22050,
44100 and 11025 samples per second respectively. All of them have male and female speakers in
different ratios. The Oxford dictionary includes British and American accent pronunciation for each
word. After data collection, they segment waveforms of the words to generate phonemes using the
Forced Aligner tool from the Penn Phonetics Laboratory.

Format A data frame with 100 rows (=observations) and 65 variables

col 1:64 one functional observation.

target encoding the word of the functional observation

Source

http://timeseriesclassification.com/description.php?Dataset=Phoneme

References

Hamooni, Hossein, and Mueen, Abdullah. "Dual-domain hierarchical classification of phonetic
time series." Data Mining (ICDM), 2014 IEEE International Conference on. IEEE, 2014.

http://timeseriesclassification.com/description.php?Dataset=Phoneme

predict.classiKernel

19

predict.classiKernel predict a classiKernel object

Description

predict function for a classiKnn object.

Usage

S3 method for class 'classiKernel'

predict(object, newdata = NULL,
predict.type = "response”, parallel = FALSE, ...)
Arguments
object [classiKernel]

newdata

predict.type

parallel

See Also

classiKernel

object of class classiKernel to get predictions from

[data.frame]

(optional) new data to predict from with observations as rows. Do not derive
this data, this will be done automatically if required by the model. If NULL, the
training data is predicted, currently without using a leave-one-out prediction.

[character(1)]

one of "response’ or *prob’, indicating the type of prediction. Choose ‘response’
to return a vector of length nrow(newdata) containing the most predicted class.
Choose "prob’ to return a matrix with nrow(newdata) rows containing the prob-
abilities for the classes as columns.

[logical(1)]

Should the prediction be parallelized? Uses parallelMap for parallelization.
See . .. for further arguments.

[list]

additional arguments to computeDistMat.

predict.classiknn

predict a classiKnn object

Description

predict function for a classiKnn object.

20

Usage

predict.classiKnn

S3 method for class 'classiknn'
predict(object, newdata = NULL,

predict.type = "response”, parallel = FALSE, ...)
Arguments
object [classiKnn]

newdata

predict.type

parallel

See Also

classiKnn

object of class classiKnn to get predictions from

[data.frame]

(optional) new data to predict from with observations as rows. Do not derive
this data, this will be done automatically if required by the model. If NULL, the
training data is predicted, currently without using a leave-one-out prediction.

[character(1)]

one of "response’ or *prob’, indicating the type of prediction. Choose 'response’
to return a vector of length nrow(newdata) containing the most predicted class.
Choose "prob’ to return a matrix with nrow(newdata) rows containing the prob-
abilities for the classes as columns.

[logical(1)]

Should the prediction be parallelized? Uses parallelMap for parallelization.
See . .. for further arguments.

[list]

additional arguments to computeDistMat.

Index

+Topic datasets
ArrowHead, 2
BeetleFly, 3
Phoneme, 18

ArrowHead, 2
BeetleFly, 3

classiFunc, 3, 15
classiKernel, 3,4, 14-16
classiKnn, 3,7, 14, 16
computeDistMat, 3-5, 7, 8,9, 16, 19, 20

Data2fd, 5, 8
deriv.fd, 5, 8
diff, 5,8
dist, 3-5, 7-10, 17
DTI, 12
DTI_original, 13

elastic.distance, 10, 17

fd, 5,8

fda, 14, 15

fda.usc, 4
fdataTransform, 5, 8, 14

Growth, 14
Growth_irregular, 15

kerChoices, 5, 15
Kernel, 5

metricChoices, 4, 7, 10, 16, 16

parallelComputeDistMat, 16
parallelMap, 16, 19, 20
Phoneme, 18
predict.classiKernel, 19
predict.classiknn, 9, 19

refund, 12, 13
rucrdtw, /17, 17

21

	ArrowHead
	BeetleFly
	classiFunc
	classiKernel
	classiKnn
	computeDistMat
	DTI
	DTI_original
	fdataTransform
	Growth
	Growth_irregular
	kerChoices
	metricChoices
	parallelComputeDistMat
	Phoneme
	predict.classiKernel
	predict.classiKnn
	Index

