Open access copies of scholarly publications are sometimes hard to find. Some are published in open access journals. Others are made freely available as preprints before publication, and others are deposited in institutional repositories, digital archives maintained by universities and research institutions. This document guides you to roadoi, a R client that makes it easy to search for these open access copies by interfacing the Unpaywall service where DOIs are matched with freely available full-texts available from open access journals and archives.
Unpaywall, developed and maintained by the team of Impactstory, is a non-profit service that finds open access copies of scholarly literature simply by looking up a DOI (Digital Object Identifier). It not only returns open access full-text links, but also helpful metadata about the open access status of a publication such as licensing or provenance information.
Unpaywall uses different data sources to find open access full-texts including:
See Piwowar et al. (2017) for a comprehensive overview of Unpaywall.1
There is one major function to talk with Unpaywall, oadoi_fetch()
, taking a character vector of DOIs and your email address as required arguments.
library(roadoi)
roadoi::oadoi_fetch(dois = c("10.1186/s12864-016-2566-9",
"10.1103/physreve.88.012814"),
email = "najko.jahn@gmail.com")
## # A tibble: 2 x 16
## doi best_oa_location oa_locations data_standard is_oa genre
## <chr> <list> <list> <int> <lgl> <chr>
## 1 10.1186/s12… <tibble [1 × 9]> <tibble [6 ×… 2 TRUE journal…
## 2 10.1103/phy… <tibble [1 × 9]> <tibble [2 ×… 2 TRUE journal…
## # ... with 10 more variables: journal_is_oa <lgl>,
## # journal_is_in_doaj <lgl>, journal_issns <chr>, journal_name <chr>,
## # publisher <chr>, title <chr>, year <chr>, updated <chr>,
## # non_compliant <list>, authors <list>
The client supports API version 2. According to the Unpaywall Data Format, the following variables with the following definitions are returned:
Column | Description |
---|---|
doi |
DOI (always in lowercase) |
best_oa_location |
list-column describing the best OA location. Algorithm prioritizes publisher hosted content (e.g. Hybrid or Gold) |
oa_locations |
list-column of all the OA locations. |
data_standard |
Indicates the data collection approaches used for this resource. 1 mostly uses Crossref for hybrid detection. 2 uses more comprehensive hybrid detection methods. |
is_oa |
Is there an OA copy (logical)? |
journal_is_oa |
Is the article published in a fully OA journal? Uses the Directory of Open Access Journals (DOAJ) as source. |
journal_issns |
ISSNs |
journal_name |
Journal title |
publisher |
Publisher |
title |
Publication title. |
year |
Year published. |
updated |
Time when the data for this resource was last updated. |
non_compliant |
Lists other full-text resources that are not hosted by either publishers or repositories. |
authors |
Lists authors (if available) |
The columns best_oa_location
and oa_locations
are list-columns that contain useful metadata about the OA sources found by Unpaywall These are
Column | Description |
---|---|
evidence |
How the OA location was found and is characterized by Unpaywall? |
host_type |
OA full-text provided by publisher or repository . |
license |
The license under which this copy is published |
url |
The URL where you can find this OA copy. |
versions |
The content version accessible at this location following the DRIVER 2.0 Guidelines (https://wiki.surfnet.nl/display/DRIVERguidelines/DRIVER-VERSION+Mappings) |
There at least two ways to simplify these list-columns.
To get the full-text links from the list-column best_oa_location
, you may want to use purrr::map_chr()
.
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.5.1
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
roadoi::oadoi_fetch(dois = c("10.1186/s12864-016-2566-9",
"10.1103/physreve.88.012814"),
email = "najko.jahn@gmail.com") %>%
dplyr::mutate(
urls = purrr::map(best_oa_location, "url") %>%
purrr::map_if(purrr::is_empty, ~ NA_character_) %>%
purrr::flatten_chr()
) %>%
.$urls
## [1] "https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-016-2566-9?site=bmcgenomics.biomedcentral.com"
## [2] "https://link.aps.org/accepted/10.1103/PhysRevE.88.012814"
If you want to gather all full-text links and to explore where these links are hosted, simplify the list-column oa_locations
with tidyr::unnest()
:
library(dplyr)
roadoi::oadoi_fetch(dois = c("10.1186/s12864-016-2566-9",
"10.1103/physreve.88.012814"),
email = "najko.jahn@gmail.com") %>%
tidyr::unnest(oa_locations) %>%
dplyr::mutate(
hostname = purrr::map(url, httr::parse_url) %>%
purrr::map_chr(., "hostname", .null = NA_integer_)
) %>%
dplyr::mutate(hostname = gsub("www.", "", hostname)) %>%
dplyr::group_by(hostname) %>%
dplyr::summarize(hosts = n())
## # A tibble: 7 x 2
## hostname hosts
## <chr> <int>
## 1 arxiv.org 1
## 2 bmcgenomics.biomedcentral.com 1
## 3 doi.org 1
## 4 europepmc.org 1
## 5 link.aps.org 1
## 6 ncbi.nlm.nih.gov 1
## 7 pub.uni-bielefeld.de 2
Note that fields to be returned might change according to the Unpaywall API specs
There are no API restrictions. However, providing your email address when using this client is required by Unpaywall. Set email address in your .Rprofile
file with the option roadoi_email
when you are too tired to type in your email address every time you want to call Unpaywall.
options(roadoi_email = "najko.jahn@gmail.com")
To follow your API call, and to estimate the time until completion, use the .progress
parameter inherited from plyr
to display a progress bar.
roadoi::oadoi_fetch(dois = c("10.1186/s12864-016-2566-9",
"10.1103/physreve.88.012814"),
email = "najko.jahn@gmail.com",
.progress = "text")
##
|
| | 0%
|
|================================ | 50%
|
|=================================================================| 100%
## # A tibble: 2 x 16
## doi best_oa_location oa_locations data_standard is_oa genre
## <chr> <list> <list> <int> <lgl> <chr>
## 1 10.1186/s12… <tibble [1 × 9]> <tibble [6 ×… 2 TRUE journal…
## 2 10.1103/phy… <tibble [1 × 9]> <tibble [2 ×… 2 TRUE journal…
## # ... with 10 more variables: journal_is_oa <lgl>,
## # journal_is_in_doaj <lgl>, journal_issns <chr>, journal_name <chr>,
## # publisher <chr>, title <chr>, year <chr>, updated <chr>,
## # non_compliant <list>, authors <list>
Unpaywall is a reliable API. However, this client follows Hadley Wickham’s Best practices for writing an API package and throws an error when the API does not return valid JSON or is not available. To catch these errors, you may want to use purrr’s safely()
function
random_dois <- c("ldld", "10.1038/ng.3260", "§dldl ")
my_data <- purrr::map(random_dois,
.f = purrr::safely(function(x) roadoi::oadoi_fetch(x, email ="najko.jahn@gmail.com")))
## Request failed [404]. Retrying in 1 seconds...
## Request failed [404]. Retrying in 1 seconds...
## Warning: Unpaywall request failed [404]
## 'ldld' is an invalid doi. See http://doi.org/ldld
## Request failed [404]. Retrying in 1.5 seconds...
## Request failed [404]. Retrying in 1.2 seconds...
## Warning: Unpaywall request failed [404]
## '§dldl' is an invalid doi. See http://doi.org/§dldl
# return results as data.frame
purrr::map_df(my_data, "result")
## # A tibble: 1 x 16
## doi best_oa_location oa_locations data_standard is_oa genre
## <chr> <list> <list> <int> <lgl> <chr>
## 1 10.1038/n… <tibble [1 × 9]> <tibble [1 × … 2 TRUE journal-…
## # ... with 10 more variables: journal_is_oa <lgl>,
## # journal_is_in_doaj <lgl>, journal_issns <chr>, journal_name <chr>,
## # publisher <chr>, title <chr>, year <chr>, updated <chr>,
## # non_compliant <list>, authors <list>
#show errors
purrr::map(my_data, "error")
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
An increasing number of universities, research organisations and funders have launched open access policies in recent years. Using roadoi together with other R-packages makes it easy to examine how and to what extent researchers comply with these policies in a reproducible and transparent manner. In particular, the rcrossref package, maintained by rOpenSci, provides many helpful functions for this task.
DOIs have become essential for referencing scholarly publications, and thus many digital libraries and institutional databases keep track of these persistent identifiers. For the sake of this vignette, instead of starting with a pre-defined set of publications originating from these sources, we simply generate a random sample of 100 DOIs registered with Crossref by using the rcrossref package.
library(dplyr)
library(rcrossref)
# get a random sample of DOIs and metadata describing these works
random_dois <- rcrossref::cr_r(sample = 100) %>%
rcrossref::cr_works() %>%
.$data
random_dois
## # A tibble: 100 x 31
## container.title created deposited doi indexed issn issue issued
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 The Journal of As… 2006-04… 2017-04-… 10.23… 2018-0… 0021… 2 1976-…
## 2 Food Additives an… 2002-07… 2016-12-… 10.10… 2018-0… 0265… 9 2000-…
## 3 American Journal … 2016-04… 2017-06-… 10.10… 2018-0… 0002… 1 2016-…
## 4 Contemporary Poli… 2008-04… 2016-12-… 10.10… 2018-0… 1356… 1 1999-…
## 5 Journal of the Ne… 2017-12… 2017-12-… 10.10… 2018-0… 0022… <NA> 2017-…
## 6 Dissolution Techn… 2015-01… 2017-04-… 10.14… 2018-0… 1521… 2 2009
## 7 The Astronomical … 2002-07… 2007-02-… 10.10… 2018-0… 0004… <NA> 1950-…
## 8 Journal of Thorac… 2008-05… 2017-06-… 10.10… 2018-0… 1556… 3 2007-…
## 9 Sedimentation Eng… 2013-05… 2017-02-… 10.10… 2018-0… <NA> <NA> 2008-…
## 10 OECD Economic Out… 2009-07… 2017-07-… 10.17… 2018-0… 0474… <NA> 2006-…
## # ... with 90 more rows, and 23 more variables: member <chr>, page <chr>,
## # prefix <chr>, publisher <chr>, reference.count <chr>, score <chr>,
## # source <chr>, title <chr>, type <chr>, url <chr>, volume <chr>,
## # author <list>, link <list>, alternative.id <chr>, update.policy <chr>,
## # assertion <list>, license <list>, isbn <chr>, archive <chr>,
## # subject <chr>, subtitle <chr>, funder <list>, abstract <chr>
Let’s see when these random publications were published
random_dois %>%
# convert to years
mutate(issued, issued = lubridate::parse_date_time(issued, c('y', 'ymd', 'ym'))) %>%
mutate(issued, issued = lubridate::year(issued)) %>%
group_by(issued) %>%
summarize(pubs = n()) %>%
arrange(desc(pubs))
## # A tibble: 46 x 2
## issued pubs
## <dbl> <int>
## 1 NA 7
## 2 2009 5
## 3 1985 4
## 4 1991 4
## 5 2006 4
## 6 2008 4
## 7 2011 4
## 8 2012 4
## 9 2014 4
## 10 2015 4
## # ... with 36 more rows
and of what type they are
random_dois %>%
group_by(type) %>%
summarize(pubs = n()) %>%
arrange(desc(pubs))
## # A tibble: 8 x 2
## type pubs
## <chr> <int>
## 1 journal-article 70
## 2 book-chapter 11
## 3 component 5
## 4 proceedings-article 5
## 5 report 4
## 6 book 2
## 7 reference-entry 2
## 8 journal-issue 1
Now let’s call Unpaywall. We are capturing possible errors.
oa_df <- purrr::map(random_dois$doi, .f = purrr::safely(
function(x) roadoi::oadoi_fetch(x, email = "najko.jahn@gmail.com")
)) %>%
purrr::map_df("result")
and merge the resulting information about open access full-text links with parts of our Crossref metadata-set
my_df <- random_dois %>%
select(doi, type) %>%
left_join(oa_df, by = c("doi" = "doi"))
After gathering the data, reporting with R is very straightforward. You can even generate dynamic reports using R Markdown and related packages, thus making your study reproducible and transparent for others.
To display how many full-text links were found and which sources were used in a nicely formatted markdown-table using the knitr
-package:
my_df %>%
group_by(is_oa) %>%
summarise(Articles = n()) %>%
mutate(Proportion = Articles / sum(Articles)) %>%
arrange(desc(Articles)) %>%
knitr::kable()
is_oa | Articles | Proportion |
---|---|---|
FALSE | 75 | 0.75 |
TRUE | 25 | 0.25 |
How did Unpaywall find those Open Access full-texts, which were characterized as best matches, and how are these OA types distributed over publication types?
my_df %>%
filter(is_oa == TRUE) %>%
tidyr::unnest(best_oa_location) %>%
group_by(evidence, type) %>%
summarise(Articles = n()) %>%
arrange(desc(Articles)) %>%
knitr::kable()
evidence | type | Articles |
---|---|---|
open (via free pdf) | journal-article | 10 |
oa journal (via publisher name) | component | 4 |
open (via free pdf) | report | 4 |
oa repository (via OAI-PMH title and first author match) | journal-article | 2 |
open (via crossref license) | journal-article | 2 |
oa journal (via doaj) | journal-article | 1 |
oa repository (via OAI-PMH doi match) | journal-article | 1 |
open (via free pdf) | proceedings-article | 1 |
For more examples, see Piwowar et al. 2018.2 Together with the article, they shared their analysis of Unpaywall Data as R Markdown supplement.
Piwowar, H., Priem, J., Larivière, V., Alperin, J. P., Matthias, L., Norlander, B., … Haustein, S. (2018). The state of OA: a large-scale analysis of the prevalence and impact of Open Access articles. PeerJ, 6, e4375. https://doi.org/10.7717/peerj.4375↩
Piwowar, H., Priem, J., Larivière, V., Alperin, J. P., Matthias, L., Norlander, B., … Haustein, S. (2018). The state of OA: a large-scale analysis of the prevalence and impact of Open Access articles. PeerJ, 6, e4375. https://doi.org/10.7717/peerj.4375↩