News
Version Updates
1.0.0
- Implement models:
BARTMachineModel
, LARSModel
.
- Implement performance metrics:
gini
, multi-class pr_auc
and roc_auc
, multivariate rmse
, msle
, rmsle
.
- Implement smooth calibration curves.
- Implement
MLMetric
class for performance metrics.
- Add
as.data.frame
method for ModelFrame
.
- Add
expand.model
function.
- Add
label
slot to MLModel
.
- Expand
metricinfo/modelinfo
support for mixed argument types.
- Rename
calibration
argument n
to breaks
.
- Rename
modelmetrics
function to performance
.
- Rename
ModelMetrics/Diff
classes to Performance/Diff
.
- Change
MLModelTune
slot resamples
to performance
.
0.4.0
- Implement models:
AdaBagModel
, AdaBoostModel
, BlackBoostModel
, EarthModel
, FDAModel
, GAMBoostModel
, GLMBoostModel
, MDAModel
, NaiveBayesModel
, PDAModel
, RangerModel
, RPartModel
, TreeModel
- Implement user-specified performance metrics in
modelmetrics
function.
- Implement metrics:
accuracy
, brier
, cindex
, cross_entropy
, f_score
, kappa2
, mae
, mse
, npv
, ppv
, pr_auc
, precision
, r2
, recall
, roc_auc
, roc_index
, sensitivity
, specificity
, weighted_kappa2
.
- Add
cutoff
argument to confusion
function.
- Add
modelinfo
and metricinfo
functions.
- Add
modelmetrics
method for Resamples
.
- Add
ModelMetrics
class with print
and summary
methods.
- Add
response
method for recipe
.
- Export
Calibration
constructor.
- Export
Confusion
constructor.
- Export
Lift
constructor.
- Extend
calibration
arguments to observed and predicted responses.
- Extend
confusion
arguments to observed and predicted responses.
- Extend
lift
arguments to observed and predicted responses.
- Extend
metrics
and stats
function arguments to accept function names.
- Extend
Resamples
to arguments with multiple models.
- Change
CoxModel
, GLMModel
, and SurvRegModel
constructor definitions so that model control parameters are specified directly instead of with a separate control
argument/structure.
- Change
predict(..., times = numeric())
function calls to survival model fits to return predicted values in the same direction as survival times.
- Change
predict(..., times = numeric())
function calls to CForestModel
fits to return predicted means instead of medians.
- Change
tune
function argument metrics
to be defined in terms of a user-specified metric or metrics.
- Deprecate MLControl arguments
cutoff
, cutoff_index
, na.rm
, and summary
.
0.3.0
- Implement linear models (
LMModel
), linear discriminant analysis (LDAModel
), and quadratic discriminant analysis (QDAModel
).
- Implement confusion matrices.
- Support matrix response variables.
- Support user-specified stratification variables for resampling via the
strata
argument of ModelFrame
or the role of "case_strata"
for recipe variables.
- Support user-specified case weights for model fitting via the role of
"case_weight"
for recipe variables.
- Provide fallback for models with undefined variable importance.
- Update the importing of
prepper
due to its relocation from rsample
to recipes
.
0.2.0
- Implement partial dependence, calibration, and lift estimation and plotting.
- Implement k-nearest neighbors model (
KNNModel
), stacked regression models (StackedModel
), super learner models (SuperModel
), and extreme gradient boosting (XGBModel
).
- Implement resampling constructors for training resubstitution (
TrainControl
) and split training and test sets (SplitControl
).
- Implement
ModelFrame
class for general model formula and dataset specification.
- Add multi-class Brier score to
modelmetrics()
.
- Extend
predict()
to automatically preprocess recipes and to use training data as the newdata
default.
- Extend
tune()
to lists of models.
- Extent
summary()
argument stats
to functions.
- Fix survival probability calculations in
GBMModel
and GLMNetModel
.
- Change
MLControl
argument na.rm
default from FALSE
to TRUE
.
- Removed
na.rm
argument from modelmetrics()
.
0.1