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Abstract

This document presents the stochastic weather generator WACSgen with its associated
models, methods and algorithms.

WACSgen is a stationary multivariate weather generator for daily climate variables
based on weather-states that uses a Markov chain for modeling the succession of (an
unlimited number of) weather states. Conditionally to the weather states, the multivari-
ate variables are modeled using the family of Complete skew-normal distributions. It is
described in Flecher et al. (2010). Since this �rst paper, the model has slightly changed,
in particular as regards the modeling of the temporal autocorrelation.

This document provides is organized in three, relatively independent, parts. The �rst
part is a classical user guide. It provides a work�ow description of WACSgen. The
second part describes in details the model, the methods, the associated algorithms and
the mathematics involved. The third part is a description of the main functions and
variables in WACSgen, thus providing a more detailed account of the implementation as
a set of R functions.
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Part I

User guide

1 Introduction and general description

WACSgen is a single site multivariate weather generator for daily climate variables, based on
weather-states. The general features of WACSgen v1.0 are:

1. Annual cycles for means and variances are removed, and residuals are computed for
all variables, except precipitation. Daily rainfalls are modeled for each season indepen-
dently, according to parametric models (Gamma distribution or transformed truncated
Gaussian distribution).

2. The modeling of the residuals is seasonal. Seasons are provided by the user; they are
not estimated from the data.

3. There is a hidden discrete variable describing the succession of weather states. A dis-
tinction between dry days (precip = 0) and wet days (precip > 0) is made. Then,
clusters are estimated on residuals for dry days (resp. wet days) with the help of the
Mclust package. The transition matrix between weather days is then estimated.

4. For each season and each weather state a closed skew-normal (CSN) distribution is
�tted. It models the vector of residuals of two consecutive days belonging to the same
weather state. In this model, the following statistical properties of the residuals are
estimated:

(a) the multivariate distribution of the variables;

(b) the temporal correlation for each variable.

How the residuals are precisely modeled and how their parameters are estimated will
be explained in details in Section 9.

The general work�ow fur running WACSgen is:

Data preparation → Estimation of the parameters → Simulation of new series → Validation

There are 6 main functions to perform a complete work�ow:

1. Preparing the data: function WACSdata

2. Estimating the parameters: function WACSestim
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3. Simulating new series: function WACSsimul

4. Validating the simulations: function WACSvalid

5. Comparing two datasets or two simulation series: function WACScompare

6. Plotting �gures: WACSplot

2 Preparing the data

Data needs to be prepared for the estimation step of the work�ow. This is done by calling
the function WACSdata

myWACSdata = WACSdata(mydata, mapping=NULL, bounds=NULL, from=NULL, to=NULL,

skip=NULL, Trange=FALSE, seasons=season.limits)

This function creates a structure belonging to the class 'WACSdata'. The following organiza-
tion of the data must be veri�ed in the dataframe mydata:

• There is one record per line. Lines correspond to consecutive daily measurements.

• The three �rst columns must indicate: year, month, day.

• After these, the �rst variable must always be precipitation, which is thus mandatory.
The other variables can be any variable, such as temperatures, radiation, wind speed,
etc. In principle, there is no limitation to the number of variables.

• Data are organized in columns. It is left to the user to verify that the data are in a
format that can be read by the function WACSdata, e.g.

> mydata[1,]

year month day rain V1 V2 V3 V4

1 1972 1 1 0 0.8 4.1 161 2

>

• WACSgen makes use of certain variable names for internal usage. This is the case for
"year","month","day","rain","tmin","tmax","RG","V","ETPP", where "RG", "V"

and "ETPP" indicate respectively �Daily radiation�, �wind speed� and �daily humidity�.
It is recommended to use these names whenever these variables are recorded. These
variables are not mandatory for WACSgen. The only mandatory variable is rain.

Several options are possible when calling the function WACSdata:

• A temporal window of mydata can be selected using the date variables from and to,
which can be useful for comparing subsets of very long series. The variable skip allows
to skip useless columns.

• The variable bounds allows to indicate absolute bounds for some variables (e.g. positive
variables), which will be enforced during the simulation step. It must be provided as a
list of lists, e.g.
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> mybounds = list( rain=list(min=0, max=7), tmax=list(-5, 45) )

If bounds=NULL, bounds are computed from the data. Some variables will have minimal
values set automatically to 0 (trange,V,RG,ETPP) and maximal values to 100 (ETPP).
Other minimum (resp. maximum) values are computed by adding (resp. subtracting)
to the maximum (resp. minimum value) its di�erence to the 10th largest (resp. lowest)
value.

• The variable skip allows to skip some variables in the dataframe mydata.

• If minimum and maximum temperature are recorded, WACSgen o�ers the choice of
modeling the variables (tmin,tmax) or (tmin,trange = tmax-tmin). In this case, tmin
must be in the second column and tmax in the third one. This choice is speci�ed by the
Boolean variable Trange. Default is Trange = FALSE, which makes no transformation.
In the simulation step, the condition tmax > tmin will always be imposed. If there is
only a mean temperature, or no temperature at all, one must set Trange = FALSE.

• The variable seasons is a vector of days indicating the �rst day of each season. For
example, for the 4 seasons MAM, JJA, SON, DJF, one must de�ne

> season.limits=c("03-01", "06-01", "09-01", "12-01")

There can be any number of seasons. The length of the vector season.limits de�nes
the number of season. One can impose a single season by setting a vector of length 1.

The function WACSdata returns a structure belonging to the class 'WACSdata'. It does the
following tasks:

1. Suppressing 29th of February;

2. Selecting the period of time;

3. Creating a vector of seasons;

4. If Trange = True, transforming (tmin,tmax) into (tmin,trange = tmax-tmin).

5. Creating the bounds for any variable for which bounds are not provided.

The structure of the class 'WACSdata' is detailed in Section 10.

3 Estimating the parameters of the model

The function WACSestim does the estimation of the parameters. Data must have been previ-
ously prepared by WACSdata.

myParam = WACSestim(myWACSdata,spar=0.7,trend.norm="L2",rain.model="Gamma",

method="MLE",Vsel=NULL,Nclusters=NULL,clustering="soft",

plot.it=FALSE,DIR="./")
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The estimation of the parameters involves several steps calling dedicated internal functions
(see Section 11).

1. The seasonal cycle is removed on all variables, except precipitation. A smoothed version
of the central tendency and a smoothed version of a measure of deviation are computed.
Two options are possible: mean + standard deviation (trend.norm = �L2�) or median
+ absolute deviation (trend.norm = �L1�). Figure 1 (left panel) illustrates how the
trend is removed for minimum temperature. The parameter spar controls the amount
of smoothing when estimating the trends. Larger values of spar produce smoother es-
timates. Smaller values produce less smooth estimates. The recommended compromise
is spar=0.7.

2. Daily rainfalls, rain, are modeled for each season independently. Two models are pro-
posed for rain: the Gamma distribution (rain.model =�Gamma� ) and the model pro-
posed in Allard and Bourotte (2013) (rain.model =�AB�; not yet implemented). Pa-
rameters can be estimated by Maximum likelihood (method= �MLE�) or by a method
of moment. (method= �MOM�). Figure 1 (right panel) shows the precipitation modeling
using a Gamma distribution.

3. Clusters of residuals de�ne weather states. The clustering itself is obtained by calling
the function Mclust of the package mclust (Fraley and Raftery, 2003; Fraley et al.,
2012).

• The number of clusters can either be speci�ed with the parameter Nclusters or left
unspeci�ed (with Nclusters=NULL), in which case the optimal number of clusters
less or equal to 4 is estimated according to a BIC criterion.

• The variables used for estimating the clusters can be speci�ed using the parameter
Vsel. By default (when Vsel=NULL) all variables are taken into account.

• Clustering is run independently and separately on dry and wet days. Obviously,
rain is not considered for dry days.

• Classi�cation of weather states can either be �hard� or �soft�. This is controlled
by the parameter clustering. When clustering=soft, one given day belongs to
each weather state according to a probability distribution. When clustering=hard,
the probability is set to 1 to the most likely weather state and 0 to all others.

The estimation of the transition matrix between weather states and the estimation
of the parameters of the multivariate density in each weather state will take into
account all data, weighted by their probabilities of belonging to the given weather
state. Estimates are found to be more robust when clustering="soft".

4. The transition matrix between weather states and the parameters of the temporal mul-
tivariate density are then estimated. Densities are assumed to belong to the Complete
Skew-Normal class of densities. No control parameters are needed for this step. Details
regarding the model and the estimation method are given in Section 9.

All parameters are stored in a structure belonging to the class 'WACSpar', which is a list of
lists. At the upper level, it contains 7 items + one list per season. For example, the call
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Figure 1: Left panel: Removing the seasonal trend for minimum temperature. In

red: smoothed average and the lower and upper bounds (average ±2 standard deviation.

In black: daily box-plots. Right panel: Modeling positive precipitation with a Gamma

distribution. Left: qq-plot. and experimental and theoretical distribution.

myParam = WACSestim(myWACSdata,spar=0.7,trend.norm="L2",rain.model="Gamma",

method="MLE",Vsel=NULL,Nclusters=NULL,clustering="soft",

plot.it=FALSE,DIR="./")

returns a list with 11 items, since 4 seasons are de�ned in myWACSdata. The object myParam
contains everything that is needed to perform simulations and to draw �gures. Its structure
is detailed in Section 3.

4 Performing the simulations

Simulations are performed by calling the function WACSsimul

mySim = WACSsimul(myParam, from, to, REJECT=FALSE)

This function requires the parameters myParam, which must belong to the class 'WACSpar' as
returned by the function WACSestim (see Section 3). The variables from and to indicate the
dates of the beginning and the end of the time window for the simulation. They can be equal
to or di�erent than those used for the estimation.

The simulation is done sequentially: day d is simulated conditionally on the values at day
(d-1). The variable REJECT is a Boolean. When REJECT = TRUE a rejection technique is used
to guarantee that the variables stay within the bounds returned by the function WACSdata.
Default is FALSE. In this case, values that have been simulated outside the bounds are forced
to the bounds. The rejection technique tends to produce biases. Setting REJECT=FALSE is
thus recommended.

6



5 Validating and comparing the simulations

5.1 Validation

Simulations can be validated, by calling the function WACSvalid. Some statistics are computed
on the simulated data, and compared with the same statistics computed on the recorded data.

myValid = WACSvalid(what="Sim",wacsdata=myWACSdata,wacspar=myParam,

wacssimul=mySim,varname=myvar,varname2=NULL,

base = 0,above=TRUE,months=1:12)

This functions requires data, parameters and simulated series belonging, respectively, to the
class 'WACSdata', 'WACSpar' and 'WACSsimul'. Several comparison analysis are proposed.
The analysis is speci�ed by choosing one of the following values for the variable what:

what = "Sim" Simulations are compared to the data (see Figure 2).
what = "Rain" QQ-plots of simulated vs. recorded precipitation are displayed

for each seasons.
what = "MeanSd" Monthly means and standard deviations are compared

(see Figure 3).
what = "BiVar" Monthly bivariate correlations coe�cients are compared.
what = "CorTemp" Monthly temporal correlations are compared.
what = "SumBase" The sums of the variable above a given threshold are compared.
what = "Persistence" The distributions of the number of consecutive days above a

given threshold are compared (see Figure 4).

The comparison is done for the variable varname. The option what = "BiVar" requires a
second variable, varname2. The options what = "SumBase" and what = "Persistence" re-
quire a threshold, base, as well as a Boolean, above, indicating whether sums and persistence
are computed above (above=TRUE) or below (above=FALSE) the threshold. For these two op-
tions, the analysis can be restricted during a set of months described in the variable months.
Defaults are varname2=NULL, base=0, above=TRUE and months=1:12.

The object myValid will be used later to produce plots with WACSplot.

5.2 Comparison

Two series belonging to the same class (either 'WACSdata' or 'WACSsimul') can be compared
by calling the function WACScompare. This function has a syntax very similar to the function
WACSvalid

myComp = WACScompare(what="Sim",wacs1=mySim1,wacspar=myParam,wacs2=mySim2,

varname=myvar,varname2=NULL,base = 0,above=TRUE,

months=1:12)

Here, the function is used to compare two simulated series (e.g. obtained with di�erent
parameters). It can also be used to compare two recorded series (at di�erent locations, or at
di�erent period of time)

myComp = WACScompare(what="Sim",wacs1=myWACSdata1,wacspar=myParam,

wacs2=myWACSdata2, varname=myvar,varname2=NULL,

base = 0,above=TRUE,months=1:12)
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The object myComp will be used later to produce plots with WACSplot.

5.3 Producing plots

There are two functions for producing plots. The function WACSplot is applied to objects
returned by WACSvalid and WACScompare to produce a PDF plot with �le name file. It does
not return anything.

WACSplot(myValid,file="myFile.pdf")

The function WACSplotdensity produces a bivariate plot of the residuals, with the �tted den-
sity superimposed. The user must specify the chosen variables (through the vector dimens),
the season (variable season), and whether dry or wet weather states must be considered (re-
spectively, dry = TRUE or dry = FALSE). The function produces a PDF plot which will be
stored in the directory DIR.

WACSplotdensity(wacsdata = myWACSdata,wacspar = myParam,season=2,dimens=c(1,2),

dry=TRUE,DIR="./")

The vector dimens speci�es the index of the variable(s) with the convention that the �rst
index corresponds always to rain. During dry days, the associated values are equal to 0.
If length(dimens)=1, the bivariate density of the variable at days (d,d+1) is plotted. If
length(dimens)=2, the same-day bivariate density of the pair of variables is plotted. Figure
5 depicts the bivariate plot of the residuals corresponding to (tmin,tmax) during the second
season, here equal to MAM.
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6 A simple example

# Organizing the data

data.tmp = read.table(paste("./",pixel,"/SAFRAN1959_2013_1771.txt",sep=""))

data.tmp = cbind(data.tmp[,1:3],Ventoux.tmp[,6],Ventoux.tmp[,8],Ventoux.tmp[,7],

Ventoux.tmp[,4:5],Ventoux.tmp[,10])

names(data.tmp) = c("year","month","day","rain","tmin","tmax","RG","V","ETPP")

# Selecting a period in the series

start = "1960-01-01"

end = "1979-12-31"

# Preparing the data

myData = WACSdata(data.tmp,from=start,to=end.short,Trange=F,

seasons=c("03-01", "06-01", "09-01", "12-01"))

# Estimating the parameters -- these options are optimal for this dataset

# Use 'plot.it=T' to get plots

DirName = "./Fitting/"

dir.create(DirName,recursive=T,showWarnings = FALSE)

myPar = WACSestim(myData,Nclusters=1:2,plot.it=T,trend.norm="L2",DIR=DirName)

# Simulation during the same period of time

DirName = "/Series/"

dir.create(DirName,recursive=T,showWarnings = FALSE)

FileName = paste(start,"_short.txt",sep="")

set.seed(seed=12345)

mySim = WACSsimul(myPar,from=start,to=end.short)

write.table(round(mySim$sim,3),file=paste(DirName,FileName,sep=""))

# Some validation plots

DirName = "/Validation/"

dir.create(DirName,recursive=T,showWarnings = FALSE)

FilePrefix = paste(start,sep="")

# Validating Simulations

myValid = WACSvalid(what="Sim", wacsdata=myData, wacspar=myPar,

wacssimul=mySim, varname="tmin")

WACSplot(myValid,file=paste(DirName,FilePrefix,"_Sim_","tmin.pdf",sep=""))
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Part II

Models and methods in WACSgen

7 Modeling precipitation

Daily rainfalls (denoted P ) are modeled for each season independently. Two models are
proposed for P : the Gamma distribution (rain.model =�Gamma� ) and the model proposed
in Allard and Bourotte (2013), hereafter referred to as the AB model (rain.model =�AB�; not
yet implemented). The gamma distribution was chosen for its �exibility to model distributions
of precipitation. It is widely used in the hydrology literature. Once the parameters have been
estimated, data are transformed with the use of the �tted cumulative distribution function
(cdf): P̃ = Φ−1(Gθ̂(P )), where G represents the �t by a Gamma cdf and Φ−1 corresponds to

the inverse of the standardized Normal cdf. P̃ is thus modeled as a Gaussian random variable;
for a given season and a given weather state, P̃ will be considered as a CSN (see below) in
order to account for possible asymmetries within clusters. Parameters can be estimated
by Maximum likelihood (method= �MLE�) or by a method of moment. (method= �MOM�).
Considering the discretization of rainfall data, it is commonly observed that small values are
well �tted with MLE, but that occurrences of large value are underestimated, whereas the
converse is observed with MOM.

Model AB will be coded later. This model is expected to give more �exibility and better �t.

8 Modeling the weather states

8.1 Estimating the weather states

Clusters of residuals de�ne weather states. The clustering itself is obtained by calling the
function Mclust of the package mclust (Fraley and Raftery, 2003; Fraley et al., 2012). The
number of clusters can either be speci�ed or left unspeci�ed, in which case the optimal number
of clusters is estimated according to a BIC criterion. The variables on which the clusters are
estimated can also be speci�ed. By default, all variables are taken into account for determining
the clusters. Clustering are run independently and separately on dry and wet days.

Classi�cation of weather states can either be �hard� or �soft�. With a �soft� classi�cation, each
day d belongs to weather states with a probability zw, with w = 1, . . . ,W and

∑W
w=1 zw = 1,

where W is the number of weather states. With �hard� classi�cation, probabilities belong to
{0, 1}, i.e. one and only one weather state is assigned to each day d.

The estimation of the parameters of a weather state involves the computation of empirical
moments: mean, covariance, weighted moment, etc. Their computation take into account
the clustering variable zw. In case of �hard� clustering, they are equal to the usual moments.
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In case of �soft� clustering these computations take into account all data, weighted by their
probabilities of belonging to the given weather state. The estimation of the transition matrix
between weather states presented in the next section provides an illustration of how �hard�
or �soft� classi�cation can be used.

8.2 Estimating the transition matrix

The weather state transition probabilities are simply estimated by

p̂w,w′ =

∑
d I[W (d) = w,W (d+ 1) = w′]zw(d)zw′(d+ 1)∑

t zw(d)zw′(d+ 1)
, (1)

in which zw(d) is the probability of the weather state being w at day d and I[A] is the indicator
function equal to 1 if condition A is satis�ed and equal to 0 otherwise. The probabilities zw(d)
are by-products of the clustering step. They can be transformed into 0-1 values if they are
set to 1 for the most likely weather-state and to 0 to all other ones.

9 Temporal complete skew-normal models for residuals

9.1 Some reminders on complete skew-normal distributions

For each season and each weather state, we assume a Closed Skew-normal (CSN) distribution
for the k = Nv (dry weather state) or k = Nv+1 (wet weather states) variables. Skew-normal
distributions are extensions of the normal distribution which admit skewness whilst retaining
most of the interesting properties of the Gaussian distribution. An overview of theoretical
and applied developments related to skewed distributions is provided in Genton (2004). Most
theoretical results about closed skew-normal distributions can be found in Gonzàlez-Farías,
Domínguez-Molina and Gupta (2004), Domínguez-Molina, Gonzàlez-Farías and Gupta (2003)
and Gupta and Aziz (2012).
A k-dimensional random vector Y is said to have a multivariate closed skew-normal distribu-
tion, denoted by CSNk,l(µ,Σ,D,ν,∆), if its density function is of the form

fk,l(y) = cl φk(y;µ,Σ) Φl(D(y − µ);ν,∆), with c−1l = Φl(0;ν,∆ + DΣD′), (2)

where µ ∈ Rk and ν ∈ Rl are both location vectors, Σ ∈ Rk×k and ∆ ∈ Rl×l are both
covariance matrices, D ∈ Rl×k, φk(y;µ,Σ) and Φk(y;µ,Σ) are the probability distribution
function (pdf) and cumulative distribution function (cdf), respectively, of the k-dimensional
normal distribution with mean vector µ and covariance matrix Σ, and D′ is the transpose
of the matrix D. In the particular case D = 0, Y is the usual k-dimensional normal distri-
bution with mean µ and variance covariance matrix Σ. CSN distributions de�ned by (2) are
over-parametrized (Gonzàlez-Farías, Domínguez-Molina and Gupta, 2004). Without loss of
generality ν is thus set equal to 0. In practice, the normalizing constant c−1l de�ned in (2)
can be di�cult to compute. The moment generating function of the CSN distribution (2) is:

MY (t) =
Φl(DΣt;ν,∆ + DΣD′)

Φl(0;ν,∆ + DΣD′)
exp{t′µ + 1/2t′Σt}

To simplify its expression, we assume, without loosing the skew-normal �exibility, that k = l,

D = SΣ−
1
2 and ∆ = Ik−S2 where Σ−

1
2 Σ−

1
2 = Σ−1, Ik is the k-dimensional identity matrix

13



and S is a diagonal matrix with elements in [−1, 1] parametrizing the skewness for each
variable. With this parametrization, equation (2) becomes

fk,k(y) = 2k φk(y;µ,Σ) Φk(SΣ−
1
2 (y − µ); 0, Ik−S2),

and the moment generating function simpli�es to

MY (t) = 2kΦk(SΣ−
1
2 t; 0, Ik) exp{t′µ + 1/2t′Σt},

which is a much easier quantity to compute. Below, such a distribution which will be denoted

CSNk(µ,Σ,SΣ−
1
2 ,0, Ik−S2) = CSN∗k(µ,Σ,S).

The transformed vector
Ỹk = Σ−1/2(Y − µ)

can be easily shown to be distributed as

Ỹk ∼ CSN∗(0, I,S), (3)

whose moment generating function is simply

MỸ (t) = 2kΦk(St; 0, Ik) exp{1/2t′t},

with Φk(St; 0, Ik) =
∏
k Φ(Sktk; 0, 1).

9.2 Multivariate model of residuals with temporal autocorrelation

Let d and d + 1 denote two successive days. The augmented vector of residuals for two
successive days is assumed to be distributed as a CSN∗:(

Yd

Yd+1

)
∼ CSN∗

((
µd
µd+1

)
,

(
Σd,d Σd,d+1

Σd+1,d Σd+1,d+1

)
,

(
Sd

Sd+1

))
. (4)

In principle, each vector or matrix of parameter depends on the weather state observed at
days d and d + 1. In order to maintain the number of parameters in a reasonable limit, we
shall make a simplifying option: the matrix Σd,d+1 depends only on Σd, Σd+1 and a vector
of correlation coe�cients written in a diagonal matrix R:

Σd,d+1 = Σ
1/2
d RΣ

1/2
d+1.

This model corresponds to separability between cross-correlations and temporal correlations.
It is equivalent to the following conditional independence assumption: Yi,d ⊥ Yj,d+1 | Yi,d+1,
for i 6= j. For two consecutive days, the model is thus1:(

Yd

Yd+1

)
∼ CSN∗

((
µd
µd+1

)
,

(
Σd Σ

1/2
d RΣ

1/2
d+1

Σ
1/2
d+1RΣ

1/2
d Σd+1

)
,

(
Sd

Sd+1

))
, (5)

where Σ
1/2
d is the only symmetric matrix such that Σ

1/2
d Σ

1/2
d = Σd.

1Note that the lag-1 autocorrelation model in Eq. (5) is di�erent that the one in Flecher et al. (2010)
which was ill-de�ned.
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• If the weather states are di�erent in days d and d+ 1, the matrix R above is de�ned as
the term by term maximum between the two correlation matrices:

R[i] = max{Rd[i],Rd+1[i]}, i = 1, . . . , k.

• If the number of variables is di�erent in the weather states corresponding to d and d+1,
the matrix R is rectangular, with a �rst column of 0s if d is dry and d + 1 is wet, and
a �rst line of 0s if d is wet and d+ 1 is dry.

This model is always well de�ned, i.e. the covariance matrix in (5) is always de�nite positive.

9.3 Two consecutive days in the same weather state

In what follows, we will assume that days d and d+1 are within the same weather state, with
k = Nv. The model becomes(

Yd

Yd+1

)
∼ CSN∗

((
µd
µd

)
,

(
Σd Σ

1/2
d RΣ

1/2
d

Σ
1/2
d RΣ

1/2
d Σd

)
,

(
Sd
Sd

))
. (6)

Marginal distribution

Within this model, from the result in Appendix A, the marginal distribution of Yd is:

Yd ∼ CSNk,2k(µd,Σd,Dmarg,0,∆marg), (7)

with

Dmarg =

(
Sd 0
0 Sd

)(
B + CΣ

1/2
d RΣ

−1/2
d

C + BΣ
1/2
d RΣ

−1/2
d

)
and

∆marg =

(
I− S2

d 0
0 I− S2

d

)
+

(
SdC
SdB

)(
Σd −Σ

1/2
d R2

dΣ
1/2
d

)
(CSd BSd) ,

where B and C are such that(
B C
C B

)
=

(
Σd Σ

1/2
d RΣ

1/2
d

Σ
1/2
d RΣ

1/2
d Σd

)−1/2
.

This law is slightly di�erent than a CSN∗(µd,Σd,Sd), in particular for high absolute values
in R and in the o�-diagonal elements of Σd.

Conditional distribution

Let us consider two consecutive days in the same weather state. Applying the result in
Appendix B yields

Yd+1 | Yd ∼ CSNk,2k(µcond,Σcond,Dcond,νcond,∆), (8)
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with

µcond = µd+1 + Σ
1/2
d+1RΣ

−1/2
d (Yd − µd), Σcond = Σd+1 −Σ

1/2
d+1(Ik −R2)Σ

1/2
d+1,

Dcond =

(
SdC

Sd+1B

)
, νcond =

(
Sd(B + CΣ

1/2
d+1RΣ

−1/2
d )

Sd+1(C + BΣ
1/2
d+1RΣ

−1/2
d )

)
(µd −Yd),

and

∆ =

(
I− S2

d 0
0 I− S2

d+1

)
,

where B and C are such that(
B C
C B

)
=

(
Σd Σ

1/2
d RΣ

1/2
d+1

Σ
1/2
d+1RΣ

1/2
d Σd+1

)−1/2
.

9.4 Estimation of the parameters

Estimation of single day marginal distribution

Concerning the inference of the marginal CSN parameters, the weighted moment method
approach proposed in Flecher et al. (2009) is used. The �rst, second and weighted moments
of a random variable Y ∼ CSN∗k(µ,Σ,S) are:

E[Y] = µ +
2√
2π

SΣ1/21k, Var(Y) = Σ− 2

π
Σ1/2S2Σ1/2 (9)

and

E[Φk(Y,0, Ik)] = 2kΦ2k

(
0;

[
−µ
0

]
,

[
Σ + Ik SΣ1/2

Σ1/2S Ik

]
,

)
. (10)

Since we wish to estimate the parameters of the whole temporal model, we shall consider the
full model described in Eq. (5), i.e. Y is the concatenated vector (Y′d,Y

′
d+1)', Σ is the block

matrix described in Eq. (5), and S is the concatenated block diagonal matrix.

For each weather state w, the corresponding experimental moments are computed according
to

M1 = Ȳw =

∑
d Y(d)zw(d)∑

d zw(d)
; M2 =

∑
d(Y(d)− Ȳw)(Y(d)− Ȳw)′z(d)∑

d z(d)

and

M0 =

∑
d Φh(Y(d); 0, Ik)zw(d)∑

d zw(d)
,

whether the clustering is soft (z ∈]0, 1[) or hard (z ∈ {0, 1}). For the temporal correlation,
one computes

Md,d+1
2 =

∑
d(Y(d)− Ȳ)(Y(d+ 1)− Ȳ)′zw(d)zw(d+ 1)∑

d zw(d)zw(d+ 1)

with

Ȳ =

∑
d Y(d)zw(d)zw(d+ 1)∑

d zw(d)zw(d+ 1)
.
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The estimation procedure coded in the function estim.csnstar uses a pro�le likelihood ap-
proach. For a given skewness matrix S, the method of moment (MOM) estimates of Σ and
µ are

Σ̂1/2 = M
1/2
2

(
I− 2

π
S2

)1/2

; µ̂ = M1 −
√

2

π
SΣ̂1/21k. (11)

The strategy is thus to �nd the elements of S minimizing the quantity∣∣∣∣M0 − 2kΦ2k

(
0;

[
−µ̂
0

]
,

[
Σ̂ + Ik SΣ̂1/2

Σ̂1/2S Ik

])∣∣∣∣ .
Estimation of lag-1 temporal correlation

The lag-1 temporal correlation coe�cients in the diagonal matrix R are estimated conditional
on the estimated values Ŝ and Σ̂ obtained above. Again, a method of moment is used. The
temporal second moments are computed as follows. For a given weather state w, we compute

Md,d+1
2 =

∑
d(Y(d)− Ȳ)(Y(d+ 1)− Ȳ)′zw(d)zw(d+ 1)∑

d zw(d)zw(d+ 1)

with

Ȳ =

∑
d Y(d)zw(d)zw(d+ 1)∑

d zw(d)zw(d+ 1)
.

9.5 Simulation

Non conditional simulation of two consecutive days

Direct application of Appendix C yields the following algorithm

1. Simulate U and V two i.i.d. (0, 1) Gaussian random vectors.

2. Compute

Y = µ +

(
Σd Σ

1/2
d RΣ

1/2
d+1

Σ
1/2
d+1RΣ

1/2
d Σd+1

)1/2

.

[(
Sd 0
0 Sd+1

)
|U|

+

(
Ik − S2

d 0
0 Ik − S2

d+1

)1/2

V

]
,

where |U| indicates the component-wise absolute value of U.

Conditional simulation of Yd+1 | Yd

The conditional distribution of Yd+1 given | Yd is given in Eq. (8). Its simulation is performed
by calling the general algorithm described in Appendix C. Care must be taken when the
number of variables is di�erent in Yd+1 and | Yd.
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Part III

Implementation details

10 Preparing the data

10.1 The function WACSdata

Data are prepared by calling

myWACSdata = WACSdata(mydata, mapping=NULL, bounds=NULL, from="1960-01-01",

to="1979-12-31", skip=NULL, Trange=FALSE,

seasons=season.limits)

The arguments of this function are:

• mydata is the array containing the data organized in columns (see Section 2).

• mapping

• bounds is a list of of lists indicating the bounds for some, or all variables. If bounds=NULL,
the bounds are set automatically according to the data. Some variables will have mini-
mal values set automatically to 0 (trange, V, RG, ETPP) and maximum values at 100
(ETPP). Other minimum (resp. maximum) values are computed by adding (resp. sub-
tracting) to the maximum (resp. minimum value) its di�erence to the 10th largest (resp.
lowest) value.

• from and to: beginning and end of the selected period.

• skip: any variables to be skipped

• Trange is a Boolean variable. If Trange = True, the variables (tmin,tmax) are trans-
formed into (tmin,trange = tmax-tmin). Trange = FALSE, there is no transforma-
tion. Default is Tminmax = False.

• seasons, which contains the �rst day of each season (there can be any number of
seasons).

10.2 The class 'WACSdata'

The call

myWACSdata = WACSdata(mydata, mapping=NULL, bounds=NULL, from="1960-01-01",

to="1979-12-31", skip=NULL, Trange=FALSE,

seasons=season.limits)
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produces a structure belonging to the class 'WACSdata', which is a list of 5 elements. The
�rst element, myWACSdata$data is the data array. It is organized as follows:

> str(myWACSdata)

$ data :'data.frame': 7300 obs. of 10 variables:

..$ year : int [1:7300] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 ...

..$ month : int [1:7300] 1 1 1 1 1 1 1 1 1 1 ...

..$ day : int [1:7300] 1 2 3 4 5 6 7 8 9 10 ...

..$ season: num [1:7300] 1 1 1 1 1 1 1 1 1 1 ...

..$ rain : num [1:7300] 0.243 1.105 2.097 0 0 ...

..$ tmin : num [1:7300] 0.76263 2.6656 2.5839 3.3493 0.00564 ...

..$ tmax : num [1:7300] 7.5 5.27 8.08 7.7 6.6 ...

..$ RG : num [1:7300] 4.48 1.91 2.47 7.62 7.25 ...

..$ V : num [1:7300] 3.93 3.7 2.74 5.98 3.27 ...

..$ ETPP : num [1:7300] 85.1 86.2 89.3 74.6 77.1 ...

$ mapping:'data.frame': 9 obs. of 2 variables:

..$ names_data: Factor w/ 9 levels "day","ETPP","month",..: 9 3 1 4 7 6 5 8 2

..$ wacs_names: Factor w/ 9 levels "day","ETPP","month",..: 9 3 1 4 7 6 5 8 2

$ bounds :'data.frame': 2 obs. of 6 variables:

..$ rain: num [1:2] 0 108

..$ tmin: num [1:2] -18.9 20.5

..$ tmax: num [1:2] -12.1 32.7

..$ RG : num [1:2] 0 35.6

..$ V : num [1:2] 0 14.6

..$ ETPP: num [1:2] 0 100

$ seasons:'data.frame': 4 obs. of 2 variables:

..$ month: num [1:4] 3 6 9 12

..$ day : num [1:4] 1 1 1 1

$ Trange : logi FALSE

- attr(*, "class")= chr "WACSdata"

11 Estimating the parameters

11.1 Algorithmic description of WACSestim

The function WACSestim performs the estimation of all parameter. It performs the following
tasks:

1. The function wacs.estimcycle estimates a smoothed version of the central tendency
and a smoothed version of a measure of deviation by use of the function smooth.spline.
Two options are possible: mean + standard deviation (trend.norm = �L2�) or median
+ absolute deviation (trend.norm = �L1�). The parameters controlling the smoothing
are spar and trend.norm.

2. The function wacs.estimrain estimates the parameters of the precipitation distribution
for each season and computes the vector of Gaussian scores. Two models are available: a
Gamma distribution (rain.model = "Gamma") and the transformed truncated Gaussian
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distribution (rain.model = "AB"; not yet implemented). For the Gamma distribution
only, two estimation methods are possible: Maximum Likelihood (method="MLE") and
method of moments (method="MOM").

3. For each season, s:

(a) The function wacs.estimWT does a clustering of dry and wet days, thereby de�ning
weather types and creating the vectors of probabilities z. Variables on which the
clustering is determined are indicated in the vector Vsel. The optimal number of
clusters is found within the vector Nclusters. Clustering can either be hard or
soft.

(b) On the basis of this clustering, the function wacs.estimMarkov estimates the tran-
sition matrix.

(c) For each weather state, w (k is the number of variables in weather state w):

i. The parameters of the CSN∗2k (skewness Sw, covariance Σw and location pa-
rameters µw) are estimated by calling the function wacs.estimCSNstar. This
function calls csnPWM and WMdiff for performing the optimization.

ii. The temporal correlation Rw are estimated.

If plot.it = TRUE, plots are produced and saved in the directory DIR. Otherwise no plot is
produced.

11.2 The function WACSestim

A typical call to WACSestim is

myParam = WACSestim(wacsdata=myWACSdata,spar=0.7,trend.norm="L2",

rain.model="Gamma",method="MOM", Vsel=c(1,2,3),

Nclusters=c(1,2,3),clustering="hard",plot.it=FALSE,

DIR="./WACSdir")

The arguments of this function are:

• wacsdata is the data on which parameters are estimated, as retutned by the function
WACSdata. It must belong to the class 'WACSdata'.

• spar is the smoothing parameter for estimating annual cycle. Default is spar=0.7.

• trend.norm speci�es the type of norm used in for computing central tendency and
variation. Must be either "L1" or "L2" (default, recommended).

• rain.model speci�es the model used for as distribution for precipitation. Must be either
"Gamma" or "AB". The latter is not yet implemented.

• method speci�es the estimation method used for estimating the parameters of the model
for precipitation. Must be either "MLE" (default, recommended) or "MOM".

• Vsel speci�es the variables used for the clustering algorithm. Default is Vsel=NULL, in
which case all variables are used.
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• Nclusters speci�es the number of clusters to consider in the clustering algorithm. When
Nclusters = NULL (default), absolute best clustering is sought for wet and dry weather
states in each season (up to 4).

• clustering indicates whether "hard or "soft" clustering is considered. Must be either
"soft" (default, recommended) or "hard".

• plot.it is a boolean indicating whether plots are produced (plot.it=TRUE), or not
(plot.it=FALSE).

• DIR Directory in which storing plots. Default is DIR =�./�

11.3 The class 'WACSestim'

A call to WACSestim produces an object, say myParam of the class 'WACSestim'. It is a list
containing 7 elements plus 1 list per season. In our example, it is thus a list of 11 elements.

> str(myParam)

List of 11

$ bounds :'data.frame': 2 obs. of 6 variables:

..$ rain: num [1:2] 0 108

..$ tmin: num [1:2] -18.9 20.5

..$ tmax: num [1:2] -12.1 32.7

..$ RG : num [1:2] 0 35.6

..$ V : num [1:2] 0 14.6

..$ ETPP: num [1:2] 0 100

$ mapping :'data.frame': 9 obs. of 2 variables:

..$ names_data: Factor w/ 9 levels "day","ETPP","month",..: 9 3 1 4 7 6 5

..$ wacs_names: Factor w/ 9 levels "day","ETPP","month",..: 9 3 1 4 7 6 5

$ Trend :List of 3

..$ Param : chr [1:2] "0.7" "L2"

..$ Central : num [1:365, 1:5] -2.32 -2.34 -2.36 -2.38 -2.39 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : NULL

.. .. ..$ : chr [1:5] "tmin" "tmax" "RG" "V" ...

..$ Deviation: num [1:365, 1:5] 3.93 3.93 3.93 3.93 3.93 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : NULL

.. .. ..$ : chr [1:5] "tmin" "tmax" "RG" "V" ...

$ Rain :List of 2

..$ RainModel: chr "Gamma"

..$ RainPar : num [1:4, 1:2] 11.706 10.079 11.475 15.686 0.633 ...

$ seasons :'data.frame': 4 obs. of 2 variables:

..$ month: num [1:4] 3 6 9 12

..$ day : num [1:4] 1 1 1 1

$ Trange : logi FALSE

$ varnames: chr [1:6] "rain" "tmin" "tmax" "RG" ...

$ Season_1: List of 7
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....

The list for season #1 contains the following elements. There is one similar list per season.

> str(myParam$Season_1)

List of 7

..$ NumbDays: num 90

..$ NumbWT : int [1:2] 2 2

..$ TransM : num [1:4, 1:4] 0.517 0.269 0.165 0.1 0.188 ...

..$ W1 :List of 4

.. ..$ loc : num [1:5] -0.516 0.574 0.447 -1.448 -0.111

.. ..$ cov : num [1:5, 1:5] 0.8586 0.2567 -0.335 0.1875 0.0833 ...

.. ..$ skew: num [1:5] 0.07026 0.05704 0.01129 0.98 -0.00899

.. ..$ rho : num [1:5] 0.81 0.689 0.365 0.121 0.54

..$ W2 :List of 4

.. ..$ loc : num [1:5] -0.33 -0.318 0.859 -0.489 -0.883

.. ..$ cov : num [1:5, 1:5] 1.123 0.98 -0.179 0.26 0.114 ...

.. ..$ skew: num [1:5] 0.02029 0.00878 0.0043 0.86357 0.00701

.. ..$ rho : num [1:5] 0.817 0.807 0.272 0.382 0.656

..$ W3 :List of 4

.. ..$ loc : num [1:6] -0.4065 0.1763 -0.0573 -0.6246 -1.3474 ...

.. ..$ cov : num [1:6, 1:6] 0.6067 0.1688 0.0861 -0.1207 0.0303 ...

.. ..$ skew: num [1:6] 0.02158 0.00475 0.01381 0.00111 0.98 ...

.. ..$ rho : num [1:6] 0.211 0.627 0.781 -0.23 0.452 ...

..$ W4 :List of 4

.. ..$ loc : num [1:6] 0.684 0.542 -0.217 -1.321 -0.987 ...

.. ..$ cov : num [1:6, 1:6] 0.83802 0.03344 -0.00766 0.01025 0.51505 ...

.. ..$ skew: num [1:6] -0.0149 0.0116 0.0217 0.9045 0.9387 ...

.. ..$ rho : num [1:6] 0.349 0.545 0.663 -0.95 0.369 ...

12 Simulating data with WACSsimul

12.1 Algorithmic description of the function WACSsimul

The general scheme of WACSsimul consists in simulating the succession of weather states
according to a Markov Chain with a di�erent transition matrix for each season. Then, con-
ditionally on the weather states and on the residuals of the previous day, new residuals are
simulated for the current day, under the condition that the corresponding variables verify the
bounds in bounds. This can be done either by rejecting any vector of residuals at day d not
respecting the bounds (option REJECT = TRUE), or by simply replacing all values outside the
bounds by the minimum or maximum value. The detailed algorithm is:

1. Actually WACSsimul calls an internal function called wacs.simul_innercall. If the
simulation is longer than 40 years, the inner function is called as many times as necessary
by steps of 20 years. At the end of the loop, simulations are concatenated in order to
produce the long series.

2. The �rst day:
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(a) A random weather state is drawn according to the limiting distribution correspond-
ing to the transition matrix of the current season.

(b) A random vector of residuals is drawn, from the CSN∗k distribution corresponding
to the simulated weather state, by calling rmcsnstar.

(c) The precipitation residual (if any) is transformed by calling transform.rain.

(d) other residuals are transformed into climate variables using the trend parameters
stored in the parameter �le.

(e) Check if the corresponding variables are within the bounds in bounds by calling
the function testvariables. If not and REJECT=TRUE, iterate steps (b) to (e) until
an appropriate vector is drawn. If not and REJECT = FALSE, the residuals outside
the bounds are forced to the bounds by calling boundsvariables.

3. For d = 2, ..., 365 ∗ Ny:

(a) Draw a new weather state according to the transition matrix of the current season,
by calling rMarkov.

(b) Build the positive de�nite matrix

Σ =

(
Σd Σ

1/2
d RΣ

1/2
d+1

Σ
1/2
d RΣ

1/2
d+1 Σd+1

)
.

(c) Draw a random conditional k-vector of the CSN∗2k in Eq. (5), as explained in
Section 9.5, by calling rmcsn.cond.

(d) Check if these random variables are within the bounds in bounds by calling the
function testvariables. If not and REJECT=TRUE, iterate steps points (b) to (d)
until an appropriate vector is drawn. If not and REJECT = FALSE, the residuals
outside the bounds are forced to the bounds by calling boundsvariables.

(e) If after 50 iterations a conditional vector cannot be simulated, a marginal random
vector satisfying the bounds is drawn.

4. The output belongs to the class 'WACSsimul'.

Note that when entering a new season, the transition matrix and all parameters of the CSN∗

distributions change. A weather state corresponding to the parameters of the new season must
be assigned to the residual simulated the previous day (with the parameters corresponding
to the previous season). This is done by calling map.wt which �nds the most likely weather
state in the new season.

12.2 The function WACSsimul

A typical call to WACSsimul is

mySimul = WACSsimul(wacspar=myParam, from, to, REJECT=FALSE)

The arguments of this function are:
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• wacspar is the �le containing the parameters of the WACS model, as estimated and
returned by WACSestim. This �le must belong to the class 'WACSestim'

• from and to: beginning and end of the simulation period.

• REJECT is the Boolean indicating whether a rejection technique is used to guarantee
variables within bounds. Default is REJECT=FALSE. In this case, values outside bounds
are forced to the bounds.

12.3 The class 'WACSsimul'

A call to WACSsimul produces an object, say mySimul, of the class 'WACSsimul'. It is a
list of one single element, which is an array having the same structure as the data array
myWACSdata$data.

> str(mySimul)

List of 1

$ sim:'data.frame': 7305 obs. of 11 variables:

..$ year : num [1:7305] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 ...

..$ month : num [1:7305] 1 1 1 1 1 1 1 1 1 1 ...

..$ day : num [1:7305] 1 2 3 4 5 6 7 8 9 10 ...

..$ season: num [1:7305] 1 1 1 1 1 1 1 1 1 1 ...

..$ WT : num [1:7305] 1 1 1 1 2 1 3 2 1 3 ...

..$ rain : num [1:7305] 0 0 0 0 0 ...

..$ tmin : num [1:7305] -8.31 -4.15 -2.59 -5.25 -9.19 ...

..$ tmax : num [1:7305] 8.12 8.87 8.68 2.71 -3.13 ...

..$ RG : num [1:7305] 6.39 6.28 4.52 2.07 5.93 ...

..$ V : num [1:7305] 0.376 1.126 1.148 1.419 2.861 ...

..$ ETPP : num [1:7305] 77.7 85.9 92.4 100 72.6 ...

- attr(*, "class")= chr "WACSsimul"
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Appendices

A: Marginal law of a CSN distribution

The marginal distribution of a CSN vector Y. We shall use the Theorem 1 in Gonzàlez-
Farías, Domínguez-Molina and Gupta (2004) Let Y be a CSNk,l(µ,Σ,D,ν,∆) and A be an
k1 × k (k1 ≤ k) matrix of rank k1. Then,

AY ∼ CSNk1,l(µA,ΣA,DA,ν,∆A)

with
µA = Aµ; ΣA = AΣA′; DA = DΣA′Σ−1A

and
∆A = ∆ + DΣD′ −DAΣAD′A.

Let us apply this lemma to the case k1 × k matrix

A = (Ik1 0),

for which AY = Y1 is the marginal distribution of Y with the k1 �rst coordinates of Y. Then

µA = µ1; ΣA = Σ11; DA = (D1 + D2Σ21Σ
−1
11 )

and
∆A = ∆ + D2(Σ22 −Σ21Σ

−1
11 Σ12)D

′
2,

where

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, and D = (D1 D2).

B: Conditional law of a CSN distribution

Let us consider that Y ∼ CSNp,n(µ,Σ,D,ν,∆) is decomposed into Y1 and Y2 according to
Y′ = (Y′1,Y

′
2)
′. Let us denote (µ′1,µ

′
2)
′ the similar decomposition of the mean vector and(

Σ11 Σ12

Σ21 Σ22

)
and (D1 D2)

the associated block decomposition of Σ and D. The dimension of Y is p and the dimension
of Y2 is p2 ≤ p.
According to Proposition 1 in Karimi and Mohammadzadeh (2012) and Proposition 16 in
Domínguez-Molina, Gonzàlez-Farías and Gupta (2003) the conditional distribution of Y2 | Y1

is a CSN distribution:

Y2 | Y1 ∼ CSNp2,n(µ2|1,Σ2|1,D2,ν2|1,∆)

with
µ2|1 = µ2 + Σ21Σ

−1
11 (Y1 − µ1); Σ2|1 = Σ22 −Σ21Σ

−1
11 Σ12,

ν2|1 = ν − (D1 + D2Σ21Σ
−1
11 )(Y1 − µ1).
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C: Simulation algorithm for a CSN∗

We use the stochastic decomposition of a CNS distribution (see Allard and Naveau, 2007). Let
use de�ne F = ΣD′Q−1 = Σ1/2SQ−1 and G = (Σ−ΣD′Q−1DΣ)1/2 with Q = ∆ + DΣD′.
Then, the vector

µ + FUU≥ν + GV (12)

is distributed as a CSNp,q(µ,Σ,D,ν,∆), where U ∼ Nq(0,Q) and V ∼ Np(0, I) independent
of U, and where U ≥ 0 indicates that for each component Ui ≥ 0. Simulation of UU≥0 can
be achieved by a direct rejection algorithm if q is small; otherwise it can be achieved with
a Gibbs Sampling algorithm. In R, it is achieved by calling the function rtmvnorm of the
package tmvtnorm. The simulation algorithm is thus the following:

1. Compute Q = ∆ + DΣD′.

2. Simulate U|U≥ν where U ∼ Nq(0,Q) by calling rtmvnorm of the package tmvtnorm.

3. Simulate V ∼ Np(0, I)

4. Compute F = ΣD′Q−1 and G = (Σ−ΣD′Q−1DΣ)1/2 = (Σ− FDΣ)1/2.

5. Return Y = µ + FUU≥ν + GV

For the special case of a CSN∗, Q reduced to Ik and ν = 0. Hence F = Σ1/2S and

G = [Σ−Σ1/2SSΣ1/2]1/2

= [Σ1/2(I− S2)Σ1/2]1/2

= Σ1/2(I− S2)1/2.

Then,

Y = µ + Σ1/2
[
SUU≥0 + (Ik − S2)1/2V

]
(13)

is distributed as a CSN∗(µ,Σ,S), with U ∼ V ∼ N (0, Ik). Since the truncated Gaussian
vector has independent component, simulation of a CSN∗ is now much easier. It does not
necessitates calling a MCMC algorithm. Note that Eq. (13) proves that if Y ∼ CSN∗(µ,Σ,S),
then the vector Ỹ = Σ−1/2(Y − µ) is distributed as a CSN∗(0, Ik,S).
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