A method for fitting the entire regularization path of the principal components lasso for linear and logistic regression models. The algorithm uses cyclic coordinate descent in a path-wise fashion. See URL below for more information on the algorithm. See Tay, K., Friedman, J. ,Tibshirani, R., (2014) 'Principal component-guided sparse regression' <arXiv:1810.04651>.
Version: | 1.0 |
Imports: | svd |
Suggests: | knitr, rmarkdown |
Published: | 2019-01-11 |
Author: | Jerome Friedman, Kenneth Tay, Robert Tibshirani |
Maintainer: | Rob Tibshirani <tibs at stanford.edu> |
License: | GPL-3 |
URL: | https://arxiv.org/abs/1810.04651 |
NeedsCompilation: | yes |
CRAN checks: | pcLasso results |
Reference manual: | pcLasso.pdf |
Vignettes: |
Introduction to pcLasso |
Package source: | pcLasso_1.0.tar.gz |
Windows binaries: | r-devel: pcLasso_1.0.zip, r-release: pcLasso_1.0.zip, r-oldrel: pcLasso_1.0.zip |
OS X binaries: | r-release: pcLasso_1.0.tgz, r-oldrel: not available |
Please use the canonical form https://CRAN.R-project.org/package=pcLasso to link to this page.