FDboost: Boosting Functional Regression Models

Regression models for functional data, i.e., scalar-on-function, function-on-scalar and function-on-function regression models, are fitted by a component-wise gradient boosting algorithm.

Version: 0.3-2
Depends: R (≥ 3.2.0), methods, mboost (≥ 2.8-0)
Imports: graphics, grDevices, utils, stats, Matrix, gamboostLSS (≥ 2.0-0), stabs, mgcv, MASS, zoo
Suggests: fda, fields, ggplot2, maps, mapdata, knitr, refund, testthat
Published: 2018-08-04
Author: Sarah Brockhaus [aut, cre], David Ruegamer [aut], Torsten Hothorn [ctb], with contributions by many others (see inst/CONTRIBUTIONS) [ctb]
Maintainer: Sarah Brockhaus <Sarah.Brockhaus at stat.uni-muenchen.de>
BugReports: https://github.com/boost-R/FDboost/issues
License: GPL-2
URL: https://github.com/boost-R/FDboost
NeedsCompilation: no
Citation: FDboost citation info
Materials: NEWS
In views: FunctionalData
CRAN checks: FDboost results

Downloads:

Reference manual: FDboost.pdf
Vignettes: FDboost FLAM Canada
FDboost FLAM fuel
FDboost FLAM viscosity
Package source: FDboost_0.3-2.tar.gz
Windows binaries: r-devel: FDboost_0.3-2.zip, r-release: FDboost_0.3-2.zip, r-oldrel: FDboost_0.3-2.zip
OS X binaries: r-release: FDboost_0.3-2.tgz, r-oldrel: FDboost_0.3-2.tgz
Old sources: FDboost archive

Reverse dependencies:

Reverse suggests: mlr

Linking:

Please use the canonical form https://CRAN.R-project.org/package=FDboost to link to this page.