
Package ‘decisionSupport’
October 15, 2018

Type Package

Title Quantitative Support of Decision Making under Uncertainty

Version 1.103.8

Date 2018-10-15

Description Supporting the quantitative analysis of binary welfare based
decision making processes using Monte Carlo simulations. Decision support
is given on two levels: (i) The actual decision level is to choose between
two alternatives under probabilistic uncertainty. This package calculates
the optimal decision based on maximizing expected welfare. (ii) The meta
decision level is to allocate resources to reduce the uncertainty in the
underlying decision problem, i.e to increase the current information to
improve the actual decision making process. This problem is dealt with
using the Value of Information Analysis. The Expected Value of
Information for arbitrary prospective estimates can be calculated as
well as Individual Expected Value of Perfect Information.
The probabilistic calculations are done via Monte Carlo
simulations. This Monte Carlo functionality can be used on its own.

License GPL-3

Depends R (>= 3.1.3)

Imports chillR (>= 0.62), msm (>= 1.5), mvtnorm (>= 1.0.2), stats (>=
3.1.3), rriskDistributions (>= 2.0), nleqslv (>= 2.6)

Suggests eha (>= 2.4.2), mc2d (>= 0.1.15), pls (>= 2.4.3), testthat
(>= 0.9.1), knitr, rmarkdown

VignetteBuilder knitr

URL http://www.worldagroforestry.org/

Encoding UTF-8

Classification/JEL I38, O16, O21, O22, O23

Collate 'chance_event.R' 'paramtnormci_fit.R' 'paramtnormci_numeric.R'
'rtnorm90ci.R' 'rdistq_fit.R' 'rdist90ci_exact.R'
'estimate1d.R' 'random.R' 'rmvnorm90ci_exact.R' 'estimate.R'
'mcSimulation.R' 'welfareDecisionAnalysis.R' 'eviSimulation.R'
'individualEvpiSimulation.R' 'estimate_read_csv_old.R'

1

http://www.worldagroforestry.org/

2 R topics documented:

'decisionSupport.R' 'decisionSupport-package.R' 'discount.R'
'gompertz_yield.R' 'make_CPT.R' 'plainNames2data.frameNames.R'
'plsr.mcSimulation.R' 'random_state.R' 'sample_CPT.R'
'sample_simple_CPT.R' 'temp_situations.R' 'vv.R'

RoxygenNote 6.1.0.9000

NeedsCompilation no

Author Eike Luedeling [cre, aut] (ICRAF),
Lutz Goehring [aut] (ICRAF and Lutz Goehring Consulting),
World Agroforesrtry Centre (ICRAF) [cph]

Maintainer Eike Luedeling <eike@eikeluedeling.com>

Repository CRAN

Date/Publication 2018-10-15 10:00:02 UTC

R topics documented:
decisionSupport-package . 3
as.data.frame.mcSimulation . 5
chance_event . 6
corMat . 7
corMat<- . 7
decisionSupport . 8
discount . 9
estimate . 10
estimate1d . 13
estimate_read_csv . 15
estimate_write_csv . 17
eviSimulation . 18
gompertz_yield . 22
hist.eviSimulation . 23
hist.mcSimulation . 25
hist.welfareDecisionAnalysis . 26
individualEvpiSimulation . 27
make_CPT . 29
mcSimulation . 30
paramtnormci_fit . 34
paramtnormci_numeric . 35
plainNames2data.frameNames . 36
plsr.mcSimulation . 38
print.mcSimulation . 39
print.summary.eviSimulation . 39
print.summary.mcSimulation . 40
print.summary.welfareDecisionAnalysis . 40
random . 41
random.estimate . 43
random.estimate1d . 44
random_state . 46

decisionSupport-package 3

rdist90ci_exact . 47
rdistq_fit . 48
rmvnorm90ci_exact . 50
row.names.estimate . 50
rtnorm90ci . 51
sample_CPT . 53
sample_simple_CPT . 54
sort.summary.eviSimulation . 55
summary.eviSimulation . 56
summary.mcSimulation . 56
summary.welfareDecisionAnalysis . 57
temp_situations . 58
vv . 59
welfareDecisionAnalysis . 60

Index 65

decisionSupport-package

Quantitative Support of Decision Making under Uncertainty.

Description

The decisionSupport package supports the quantitative analysis of welfare based decision making
processes using Monte Carlo simulations. This is an important part of the Applied Information
Economics (AIE) approach developed in Hubbard (2014). These decision making processes can be
categorized into two levels of decision making:

1. The actual problem of interest of a policy maker which we call the underlying welfare based
decision on how to influence an ecological-economic system based on a particular information
on the system available to the decision maker and

2. the meta decision on how to allocate resources to reduce the uncertainty in the underlying
decision problem, i.e to increase the current information to improve the underlying decision
making process.

The first problem, i.e. the underlying problem, is the problem of choosing the decision which max-
imizes expected welfare. The welfare function can be interpreted as a von Neumann-Morgenstern
utility function. Whereas, the second problem, i.e. the meta decision problem, is dealt with using
the Value of Information Analysis (VIA). Value of Information Analysis seeks to assign a value to a
certain reduction in uncertainty or, equivalently, increase in information. Uncertainty is dealt with
in a probabilistic manner. Probabilities are transformed via Monte Carlo simulations.

Details

The functionality of this package is subdivided into three main parts: (i) the welfare based analysis
of the underlying decision, (ii) the meta decision of reducing uncertainty and (iii) the Monte Carlo
simulation for the transformation of probabilities and calculation of expectation values. Further-
more, there is a wrapper function around these three parts which aims at providing an easy-to-use
interface.

4 decisionSupport-package

Welfare based Analysis of the Underlying Decision Problem: Implementation: welfareDecisionAnalysis

The Meta Decision of Reducing Uncertainty:
The meta decision of how to allocate resources for uncertainty reduction can be analyzed with this
package in two different ways: via (i) Expected Value of Information Analysis or (ii) via Partial
Least Squares (PLS) analysis and Variable Importance in Projection (VIP).

Expected Value of Information (EVI): Implementation: eviSimulation, individualEvpiSimulation

Partial Least Squares (PLS) analysis and Variable Importance in Projection (VIP): Implemen-
tation: plsr.mcSimulation, VIP

Solving the Practical Problem of Calculating Expectation Values by Monte Carlo Simula-
tion:

Estimates: Implementation: estimate

Multivariate Random Number Generation: Implementation: random.estimate

Monte Carlo Simulation: Implementation: mcSimulation

Integrated Welfare Decision and Value of Information Analysis: A wrapper function: The
function decisionSupport integrates the most important features of this package into a single
function. It is wrapped arround the functions welfareDecisionAnalysis, plsr.mcSimulation,
VIP and individualEvpiSimulation.

Copyright ©

World Agroforestry Centre (ICRAF) 2015

License

The R-package decisionSupport is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation, either ver-
sion 3 of the License, or (at your option) any later version: GNU GENERAL PUBLIC LICENSE,
Version 3 (GPL-3)

The R-package decisionSupport is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the R-package
decisionSupport. If not, see http://www.gnu.org/licenses/.

Author(s)

Lutz Göhring <lutz.goehring@gmx.de>, Eike Luedeling (ICRAF) <eike@eikeluedeling.com>

Maintainer: Eike Luedeling <eike@eikeluedeling.com>

References

Hubbard, Douglas W., How to Measure Anything? - Finding the Value of "Intangibles" in Business,
John Wiley & Sons, Hoboken, New Jersey, 2014, 3rd Ed, http://www.howtomeasureanything.
com/.

Hugh Gravelle and Ray Rees, Microeconomics, Pearson Education Limited, 3rd edition, 2004.

http://www.worldagroforestry.org/
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/
http://www.worldagroforestry.org/
http://www.howtomeasureanything.com/
http://www.howtomeasureanything.com/

as.data.frame.mcSimulation 5

See Also

welfareDecisionAnalysis, eviSimulation, mcSimulation

as.data.frame.mcSimulation

Coerce Monte Carlo simulation results to a data frame.

Description

Coerces Monte Carlo simulation results to a data frame.

Usage

S3 method for class 'mcSimulation'
as.data.frame(x, row.names = NULL,
optional = FALSE, ..., stringsAsFactors = default.stringsAsFactors())

Arguments

x An object of class mcSimulation.

row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.

optional logical. If TRUE, setting row names and converting column names (to syntac-
tic names: see make.names) is optional. Note that all of R’s base package
as.data.frame() methods use optional only for column names treatment,
basically with the meaning of data.frame(*, check.names = !optional).
See also the make.names argument of the matrix method.

... additional arguments to be passed to or from methods.

stringsAsFactors

logical: should the character vector be converted to a factor?

See Also

as.data.frame

6 chance_event

chance_event simulate occurrence of random events

Description

In many simulations, certain events can either occur or not, and values for dependent variables can
depend on which of the cases occurs. This function randomly simulates whether events occur and
returns output values accordingly. The outputs can be single values or series of values, with the
option of introducing artificial variation into this dataset.

Usage

chance_event(chance, value_if = 1, value_if_not = 0, n = 1,
CV_if = 0, CV_if_not = CV_if, one_draw = FALSE)

Arguments

chance probability that the risky event will occur (between 0 and 1)

value_if output value in case the event occurs. This can be either a single numeric value
or a numeric vector. Defaults to 1.

value_if_not output value in case the event does not occur. This can be either a single numeric
value or a numeric vector. If it is a vector, it must have the same length as
value_if

n number of times the risky event is simulated. This is ignored if length(value_if)>1.

CV_if coefficient of variation for introducing randomness into the value_if data set.
This defaults to 0 for no artificial variation. See documentation for the vv func-
tion for details.

CV_if_not coefficient of variation for introducing randomness into the value_if_not data
set. This defaults to the value for CV_if. See documentation for the vv function
for details.

one_draw boolean coefficient indicating if event occurrence is determined only once (TRUE)
with results applying to all elements of the results vector, or if event occurrence
is determined independently for each element (FALSE; the default)

Value

numeric vector of the same length as value_if or, if length(value_if)==1 of length n, containing
outputs of a probabilistic simulation that assigns value_if if the event occurs, or value_if_not if is
does not occur (both optionally with artificial variation)

Author(s)

Eike Luedeling

corMat 7

Examples

chance_event(0.6,6)

chance_event(.5,c(0,5),c(5,6))

chance_event(chance=0.5,
value_if=1,
value_if_not=5,
n=10,
CV_if=20)

corMat Return the Correlation Matrix.

Description

Return the correlation matrix of rho.

Usage

corMat(rho)

Arguments

rho a distribution.

corMat<- Replace correlation matrix.

Description

Replace the correlation matrix.

Usage

corMat(x) <- value

Arguments

x a distribution.

value numeric matrix: new correlation matrix.

8 decisionSupport

decisionSupport Welfare Decision and Value of Information Analysis wrapper function.

Description

This function performs a Welfare Decision Analysis via a Monte Carlo simulation from input files
and analyses the value of different information about the input variables. This value of information
analysis can be done via combined PLSR - VIP analysis or via IndividualEVPI calculation. Results
are saved as plots and tables.

Usage

decisionSupport(inputFilePath, outputPath, welfareFunction,
numberOfModelRuns, randomMethod = "calculate",
functionSyntax = "data.frameNames", relativeTolerance = 0.05,
write_table = TRUE, plsrVipAnalysis = TRUE,
individualEvpiNames = NULL, sortEvpiAlong = if (individualEvpiNames)
individualEvpiNames[[1]] else NULL, oldInputStandard = FALSE,
verbosity = 1)

Arguments

inputFilePath Path to input csv file, which gives the input estimate.
outputPath Path where the result plots and tables are saved.
welfareFunction

The welfare function.
numberOfModelRuns

The number of running the welfare model for the underlying Monte Carlo sim-
ulation.

randomMethod character: The method to be used to sample the distribution representing the
input estimate. For details see option method in random.estimate.

functionSyntax character: function syntax used in the welfare function(s). For details see
mcSimulation.

relativeTolerance

numeric: the relative tolerance level of deviation of the generated confidence in-
terval from the specified interval. If this deviation is greater than relativeTolerance
a warning is given.

write_table logical: If the full Monte Carlo simulation results and PLSR results should be
written to file.

plsrVipAnalysis

logical: If PLSR-VIP analysis shall be performed.
individualEvpiNames

character vector: names of variables, which for the IndividualEVPI shall be
obtained via Monte Carlo simulation. If =NULL (the default), no IndividualEVPI
is calculated; if ="all", the IndividualEVPI is calculated for all variables. Note:
depending on numberOfModelRuns and the complexity of welfare this might
take a long time.

discount 9

sortEvpiAlong character: result name along which the summary of the IndividualEVPI shall
be sorted. Only relevant if sortEvpiAlong!=NULL.

oldInputStandard

logical: If the old input standard should be used (estimate_read_csv_old).

verbosity integer: if 0 the function is silent; the larger the value the more verbose is
output information.

Details

This function integrates the most important features of this package into a single function. It is
wrapped arround the functions welfareDecisionAnalysis, plsr.mcSimulation, VIP and individualEvpiSimulation.

Combined PLSR - VIP Analysis: The combined Partial Least Squares Regression (PLSR) and
Variables Importance in Projection (VIP) analysis is implemented via: plsr.mcSimulation and
VIP.

IndividualEVPI Calculation: Implementation: individualEvpiSimulation

See Also

mcSimulation, estimate, estimate_read_csv, plsr.mcSimulation, VIP, welfareDecisionAnalysis,
individualEvpiSimulation, decisionSupport-package

discount Discount time series for Net Present Value (NPV) calculation

Description

This function discounts values along a time series, applying the specified discount rate. It can also
calculate the Net Present Value (NPV), which is the sum of these discounted values.

Usage

discount(x, discount_rate, calculate_NPV = FALSE)

Arguments

x numeric vector, typically containing time series data of costs or benefits

discount_rate numeric; the discount rate (in percent), expressing the time preference of who-
ever is evaluating these data economically

calculate_NPV boolean; if set to TRUE, the discounted time values are summed, otherwise, they
are returned as a vector

Value

If calculate_NPV=TRUE, the function returns the Net Present Value (NPV) as a numeric value. If
calculate_NPV=FALSE, the time-discounted values are returned as a numeric vector.

10 estimate

Author(s)

Eike Luedeling

Examples

x<-c(3,6,2,5,4,3,9,0,110)
discount_rate<-5

discount(x,discount_rate)
discount(x,discount_rate,calculate_NPV=TRUE)

estimate Create a multivariate estimate object.

Description

estimate creates an object of class estimate. The concept of an estimate is extended from the 1-
dimensional (cf. estimate1d) to the multivariate case. This includes the description of correlations
between the different variables. An estimate of an n-dimensional variable is at minimum defined by
each component being a 1-dimensional estimate. This means, that for each component, at minimum,
the type of its univariate parametric distribution, its 5% - and 95% quantiles must be provided. In
probability theoretic terms, these are the marginal distributions of the components. Optionally, the
individual median and the correlations between the components can be supplied.

as.estimate tries to coerce a set of objects and transform them to class estimate.

Usage

estimate(distribution, lower, upper, ..., correlation_matrix = NULL)

as.estimate(..., correlation_matrix = NULL)

Arguments

distribution character vector: defining the types of the univariate parametric distribu-
tions.

lower numeric vector: lower bounds of the 90% confidence intervals, i.e the 5%-
quantiles of this estimates components.

upper numeric vector: upper bounds of the 90% confidence intervals, i.e the 95%-
quantiles of this estimates components.

... in estimate: optional arguments that can be coerced to a data frame comprising
further columns of the estimate (for details cf. below).
in as.estimate: arguments that can be coerced to a data frame comprising
the marginal distributions of the estimate components. Mandatory columns are
distribution, lower and upper.

estimate 11

correlation_matrix

numeric matrix: containing the correlations of the variables (optional).

Details

The input arguments inform the estimate about its marginal distributions and joint distribution, i.e.
the correlation matrix.

The structure of the estimates marginal input information:
in estimate The marginal distributions are defined by the arguments distribution, lower

and upper and, optionally, by further columns supplied in ... that can be coerced to a
data.frame with the same length as the mandatory arguments.

in as.estimate The marginal distributions are completely defined in These arguments
must be coercible to a data.frame, all having the same length. Mandatory columns are
distribution, lower and upper.

Mandatory input columns:

Column R-type Explanation
distribution character vector Marginal distribution types
lower numeric vector Marginal 5%-quantiles
upper numeric vector Marginal 95%-quantiles

It must hold that lower <= upper for every component of the estimate.

Optional input columns: The optional parameters in ... provide additional characteristics of
the marginal distributions of the estimate. Frequent optional columns are:

Column R-type Explanation
variable character vector Variable names
median cf. below Marginal 50%-quantiles
method character vector Methods for calculation of marginal distribution parameters

The median column:
If supplied as input, any component of median can be either NA, numeric (and not NA) or the
character string "mean". If it equals "mean" it is set to rowMeans(cbind(lower, upper)) of
this component; if it is numeric it must hold that lower <= median <= upper for this compo-
nent. In case that no element median is provided, the default is median=rep(NA, length(distribution)).
The median is important for the different methods possible in generating the random numbers
(cf. random.estimate).

The structure of the estimates correlation input information: The argument correlation_matrix
is the sub matrix of the full correlation matrix of the estimate containing all correlated elements.
Thus, its row and column names must be a subset of the variable names of the marginal distri-
butions. This means, that the information which variables are uncorrelated does not need to be
provided explicitly.

correlation_matrix must have all the properties of a correlation matrix, viz. symmetry, all
diagonal elements equal 1 and all of diagonal elements are between -1 and 1.

12 estimate

Value

An object of class estimate which is a list with components $marginal and $correlation_matrix:

$marginal is a data.frame with mandatory columns:

Mandatory column R-type Explanation
distribution character vector Distribution types
lower numeric vector 5%-quantiles
median numeric vector 50%-quantiles or NA
upper numeric vector 95%-quantiles

The row.names are the names of the variables. Each row has the properties of an estimate1d.
Note that the median is a mandatory element of an estimate, although it is not necessary as in-
put. If a component of median is numeric and not NA it holds that: lower <= median <= upper.
In any case an estimate object has the property any(lower <= upper).

$correlation_matrix is a symmetric matrix with row and column names being the subset of
the variables supplied in $marginal which are correlated. Its elements are the corresponding
correlations.

See Also

estimate1d, random.estimate, row.names.estimate, names.estimate, corMat, estimate_read_csv
and estimate_write_csv.

Examples

Create a minimum estimate (only mandatory marginal information supplied):
estimateMin<-estimate(c("posnorm", "lnorm"),

c(4, 4),
c(50, 10))

print(estimateMin)

Create an estimate with optional columns (only marginal information supplied):
estimateMarg<-estimate(c("posnorm", "lnorm"),

c(4, 4),
c(50, 10),

variable=c("revenue", "costs"),
median = c("mean", NA),
method = c("fit", ""))

print(estimateMarg)
print(corMat(estimateMarg))

Create a minimum estimate from text (only mandatory marginal information supplied):
estimateTextMin<-"distribution, lower, upper

posnorm, 100, 1000
posnorm, 50, 2000
posnorm, 50, 2000
posnorm, 100, 1000"

estimateMin<-as.estimate(read.csv(header=TRUE, text=estimateTextMin,
strip.white=TRUE, stringsAsFactors=FALSE))

estimate1d 13

print(estimateMin)

Create an estimate from text (only marginal information supplied):
estimateText<-"variable, distribution, lower, upper, median, method

revenue1, posnorm, 100, 1000, NA,
revenue2, posnorm, 50, 2000, , fit
costs1, posnorm, 50, 2000, 70, calculate
costs2, posnorm, 100, 1000, mean, "

estimateMarg<-as.estimate(read.csv(header=TRUE, text=estimateText,
strip.white=TRUE, stringsAsFactors=FALSE))

print(estimateMarg)
print(corMat(estimateMarg))

Create an estimate from text (with correlated components):
estimateTextMarg<-"variable, distribution, lower, upper

revenue1, posnorm, 100, 1000
revenue2, posnorm, 50, 2000
costs1, posnorm, 50, 2000
costs2, posnorm, 100, 1000"

estimateTextCor<-", revenue1, costs2
revenue1, 1, -0.3
costs2, -0.3, 1"

estimateCor<-as.estimate(read.csv(header=TRUE, text=estimateTextMarg,
strip.white=TRUE, stringsAsFactors=FALSE),
correlation_matrix=data.matrix(read.csv(text=estimateTextCor,

row.names=1,
strip.white=TRUE)))

print(estimateCor)
print(corMat(estimateCor))

estimate1d Create a 1-dimensional estimate object.

Description

estimate1d creates an object of class estimate1d. The estimate of a one dimensional variable is
at minimum defined by the type of a univariate parametric distribution, the 5% - and 95% quantiles.
Optionally, the median can be supplied.

as.estimate1d tries to transform an object to class estimate1d.

Usage

estimate1d(distribution, lower, upper, ...)

as.estimate1d(x, ...)

14 estimate1d

Arguments

distribution character: A character string that defines the type of the univariate parametric
distribution.

lower numeric: lower bound of the 90% confidence interval, i.e the 5%-quantile of
this estimate.

upper numeric: upper bound of the 90% confidence interval, i.e the 95%-quantile of
this estimate.

... arguments that can be coerced to a list comprising further elements of the 1-d
estimate (for details cf. below). Each element must be atomic and of length 1
(1-d property).

x an object to be transformed to class estimate1d.

Details

It must hold that lower <= upper.

The structure of the input arguments:
Mandatory input elements:

Argument R-type Explanation
distribution character Distribution type of the estimate
lower numeric 5%-quantile of the estimate
upper numeric 95%-quantile of the estimate

Optional input elements: The optional parameters in ... provide additional characteristics of
the 1-d estimate. Frequent optional elements are:

Argument R-type Explanation
variable character Variable name
median cf. below 50%-quantile of the estimate
method character Method for calculation of distribution parameters

The median: If supplied as input, median can be either NULL, numeric or the character string
"mean". If it is NA it is set to NULL; if it equals "mean" it is set to mean(c(lower, upper)); if
it is numeric it must hold that lower <= median <= upper. In case that no element median
is provided, the default is median=NULL.

Value

An object of class estimate1d and list with at least (!) the elements:

Element R-type Explanation
distribution character Distribution type of the estimate
lower numeric 5%-quantile of the estimate
median numeric or NULL 50%-quantile of the estimate
upper numeric 95%-quantile of the estimate

estimate_read_csv 15

Note that the median is a mandatory element of an estimate1d, although it is not necessary as
input. If median is numeric it holds that: lower <= median <= upper. In any case an estimate1d
object has the property lower <= upper.

See Also

random.estimate1d

estimate_read_csv Read an Estimate from CSV - File.

Description

This function reads an estimate from the specified csv files. In this context, an estimate of sev-
eral variables is defined by its marginal distribution types, its marginal 90%-confidence intervals
[lower,upper] and, optionally, its correlations.

estimate_read_csv_old reads an estimate from CSV file(s) according to the deprecated standard.
This function is for backward compatibility only.

Usage

estimate_read_csv(fileName, strip.white = TRUE, ...)

estimate_read_csv_old(fileName, strip.white = TRUE, ...)

Arguments

fileName Name of the file containing the marginal information of the estimate that should
be read.

strip.white logical. Used only when sep has been specified, and allows the stripping of lead-
ing and trailing white space from unquoted character fields (numeric fields are
always stripped). See scan for further details (including the exact meaning of
‘white space’), remembering that the columns may include the row names.

... Further parameters to be passed to read.csv.

Details

An estimate might consists of uncorrelated and correlated variables. This is reflected in the input
file structure, which is described in the following.

CSV input file structures: The estimate is read from one or two csv files: the marginal csv file
which is mandatory and the correlation csv file which is optional. The marginal csv file contains
the definition of the distribution of all variables ignoring potential correlations. The correlation
csv file only defines correlations.

The structure of the marginal distributions input file (mandatory): File name structure: <marginal-filename>.csv
Mandatory columns:

16 estimate_read_csv

Column name R-type Explanation
variable character vector Variable names
distribution character vector Marginal distribution types
lower numeric vector Marginal 5%-quantiles
upper numeric vector Marginal 95%-quantiles

Frequent optional columns are:

Column name R-type Explanation
description character Short description of the variable.
median cf. estimate Marginal 50%-quantiles
method character vector Methods for calculation of marginal distribution parameters

Columns without names are ignored. Rows where the variable field is empty are also dropped.

The structure of the correlation file (optional): File name structure: <marginal-filename>_cor.csv
Columns and rows are named by the corresponding variables. Only those variables need to be
present which are correlated with others.
The element ["rowname","columnname"] contains the correlation between the variables rowname
and columnname. Uncorrelated elements have to be set to 0. The diagonal element ["name","name"]
has to be set to 1.
The matrix must be given in symmetric form.

Deprecated input standard (estimate_read_csv_old): File name structure of the correlation
file: <marginal-filename>.csv_correlations.csv

Value

An object of type estimate which element $marginal is read from file fileName and which ele-
ment $correlation_matrix is read from file gsub(".csv","_cor.csv",fileName).

See Also

estimate_write_csv, read.csv, estimate

estimate_read_csv, read.csv, estimate

Examples

Read the joint estimate information for the variables "sales", "productprice" and
"costprice" from file:
Get the path to the file with the marginal information:
marginalFilePath=system.file("extdata","profit-4.csv",package="decisionSupport")
Read the marginal information from file "profit-4.csv" and print it to the screen as
illustration:
read.csv(marginalFilePath, strip.white=TRUE)
Read the correlation information from file "profit-4_cor.csv" and print it to the screen as
illustration:
read.csv(gsub(".csv","_cor.csv",marginalFilePath), row.names=1)
Now read marginal and correlation file straight into an estimate:
parameterEstimate<-estimate_read_csv(fileName=marginalFilePath)

estimate_write_csv 17

print(parameterEstimate)

estimate_write_csv Write an Estimate to CSV - File.

Description

This function writes an estimate to the specified csv file(s).

Usage

estimate_write_csv(estimate, fileName, varNamesAsColumn = TRUE,
quote = FALSE, ...)

Arguments

estimate estimate: Estimate object to write to file.

fileName character: File name for the output of the marginal information of the estimate.
It must end with .csv.

varNamesAsColumn

logical: If TRUE the variable names will be written as a separate column, oth-
erwise as row names.

quote a logical value (TRUE or FALSE) or a numeric vector. If TRUE, any character
or factor columns will be surrounded by double quotes. If a numeric vector, its
elements are taken as the indices of columns to quote. In both cases, row and
column names are quoted if they are written. If FALSE, nothing is quoted.
Parameter is passed on to write.csv.

... Further parameters to be passed to write.csv.

Details

The marginal information of the estimate is written to file fileName=<marginal-filename>.csv.
If the estimate contains correlated variables, the correlation matrix is written to the separate file
<marginal-filename>_cor.csv.

See Also

estimate_read_csv, estimate, write.csv

18 eviSimulation

eviSimulation Expected Value of Information (EVI) Simulation.

Description

The Expected Value of Information (EVI) is calculated based on a Monte Carlo simulation of the
expected welfare (or values or benefits) of two different decision alternatives. The expected welfare
is calculated for the current estimate of variables determining welfare and a prospective estimate of
these variables. The prospective estimate resembles an improvement in information.

Usage

eviSimulation(welfare, currentEstimate, prospectiveEstimate,
numberOfModelRuns, randomMethod = "calculate",
functionSyntax = "data.frameNames", relativeTolerance = 0.05,
verbosity = 0)

Arguments

welfare either a function or a list with two functions, i.e. list(p1,p2). In the
first case the function is the net benefit (or welfare) of project approval (PA) vs.
the status quo (SQ). In the second case the element p1 is the function valuing
the first project and the element p2 valuing the second project, viz. the welfare
function of p1 and p2 respectively.

currentEstimate

estimate: describing the distribution of the input variables as currently being
estimated.

prospectiveEstimate

estimate or list of estimate objects: describing the prospective distribution
of the input variables which could hypothetically be achieved by collecting more
information, viz. improving the measurement.

numberOfModelRuns

integer: The number of running the welfare model for the underlying Monte
Carlo simulation.

randomMethod character: The method to be used to sample the distribution representing the
input estimate. For details see option method in random.estimate.

functionSyntax character: function syntax used in the welfare function(s). For details see
mcSimulation.

relativeTolerance

numeric: the relative tolerance level of deviation of the generated confidence in-
terval from the specified interval. If this deviation is greater than relativeTolerance
a warning is given.

verbosity integer: if 0 the function is silent; the larger the value the more verbose is
output information.

eviSimulation 19

Details

The Expected Value of Information (EVI): The Expected Value of Information is the decrease
in the EOL for an information improvement from the current (ρcurrentX) to a better prospective
(hypothetical) information (ρprospectiveX):

EVI := EOL(ρcurrentX)− EOL(ρprospectiveX).

Value

An object of class eviSimulation with the following elements:

$current welfareDecisionAnalysis object for currentEstimate

$prospective welfareDecisionAnalysis object for single prospectiveEstimate or a list of
welfareDecisionAnalysis objects for prospectiveEstimate being a list of estimates.

$evi Expected Value of Information(s) (EVI)(s) gained by the prospective estimate(s) w.r.t. the
current estimate.

References

Hubbard, Douglas W., How to Measure Anything? - Finding the Value of "Intangibles" in Business,
John Wiley & Sons, Hoboken, New Jersey, 2014, 3rd Ed, http://www.howtomeasureanything.
com/.

Gravelle, Hugh and Ray Rees, Microeconomics, Pearson Education Limited, 3rd edition, 2004.

See Also

welfareDecisionAnalysis, mcSimulation, estimate, summary.eviSimulation

Examples

###
Example 1 Only one prospective estimate:
###
numberOfModelRuns=10000
Create the estimate object:
variable=c("revenue","costs")
distribution=c("posnorm","posnorm")
lower=c(10000, 5000)
upper=c(100000, 50000)
currentEstimate<-as.estimate(variable, distribution, lower, upper)
prospectiveEstimate<-currentEstimate
revenueConst<-mean(c(currentEstimate$marginal["revenue","lower"],

currentEstimate$marginal["revenue","upper"]))
prospectiveEstimate$marginal["revenue","distribution"]<-"const"
prospectiveEstimate$marginal["revenue","lower"]<-revenueConst
prospectiveEstimate$marginal["revenue","upper"]<-revenueConst
(a) Define the welfare function without name for the return value:
profit<-function(x){
x$revenue-x$costs
}

http://www.howtomeasureanything.com/
http://www.howtomeasureanything.com/

20 eviSimulation

Calculate the Expected Value of Information:
eviSimulationResult<-eviSimulation(welfare=profit,

currentEstimate=currentEstimate,
prospectiveEstimate=prospectiveEstimate,
numberOfModelRuns=numberOfModelRuns,
functionSyntax="data.frameNames")

Show the simulation results:
print(summary(eviSimulationResult))
###
(b) Define the welfare function with a name for the return value:
profit<-function(x){
list(Profit=x$revenue-x$costs)
}
Calculate the Expected Value of Information:
eviSimulationResult<-eviSimulation(welfare=profit,

currentEstimate=currentEstimate,
prospectiveEstimate=prospectiveEstimate,
numberOfModelRuns=numberOfModelRuns,
functionSyntax="data.frameNames")

Show the simulation results:
print(summary((eviSimulationResult)))
###
(c) Two decision variables:
decisionModel<-function(x){
list(Profit=x$revenue-x$costs,

Costs=-x$costs)
}
Calculate the Expected Value of Information:
eviSimulationResult<-eviSimulation(welfare=decisionModel,

currentEstimate=currentEstimate,
prospectiveEstimate=prospectiveEstimate,
numberOfModelRuns=numberOfModelRuns,
functionSyntax="data.frameNames")

Show the simulation results:
print(summary((eviSimulationResult)))
###
Example 2 A list of prospective estimates:
###
numberOfModelRuns=10000
Define the welfare function with a name for the return value:
profit<-function(x){
list(Profit=x$revenue-x$costs)

}
Create the estimate object:
variable=c("revenue","costs")
distribution=c("posnorm","posnorm")
lower=c(10000, 5000)
upper=c(100000, 50000)
currentEstimate<-as.estimate(variable, distribution, lower, upper)
perfectInformationRevenue<-currentEstimate
revenueConst<-mean(c(currentEstimate$marginal["revenue","lower"],

currentEstimate$marginal["revenue","upper"]))

eviSimulation 21

perfectInformationRevenue$marginal["revenue","distribution"]<-"const"
perfectInformationRevenue$marginal["revenue","lower"]<-revenueConst
perfectInformationRevenue$marginal["revenue","upper"]<-revenueConst
(a) A list with one element
prospectiveEstimate<-list(perfectInformationRevenue=perfectInformationRevenue)
Calculate the Expected Value of Information:
eviSimulationResult<-eviSimulation(welfare=profit,

currentEstimate=currentEstimate,
prospectiveEstimate=prospectiveEstimate,
numberOfModelRuns=numberOfModelRuns,
functionSyntax="data.frameNames")

Show the simulation results:
print(summary(eviSimulationResult))
###
(b) A list with two elements
perfectInformationCosts<-currentEstimate
costsConst<-mean(c(currentEstimate$marginal["costs","lower"],

currentEstimate$marginal["costs","upper"]))
perfectInformationCosts$marginal["costs","distribution"]<-"const"
perfectInformationCosts$marginal["costs","lower"]<-costsConst
perfectInformationCosts$marginal["costs","upper"]<-costsConst
prospectiveEstimate<-list(perfectInformationRevenue=perfectInformationRevenue,

perfectInformationCosts=perfectInformationCosts)
Calculate the Expected Value of Information:
eviSimulationResult<-eviSimulation(welfare=profit,

currentEstimate=currentEstimate,
prospectiveEstimate=prospectiveEstimate,
numberOfModelRuns=numberOfModelRuns,
functionSyntax="data.frameNames")

Show the simulation results:
print(summary(eviSimulationResult))
###
Example 3 A list of prospective estimates and two decision variables:
###
numberOfModelRuns=10000
Create the current estimate object:
variable=c("revenue","costs")
distribution=c("posnorm","posnorm")
lower=c(10000, 5000)
upper=c(100000, 50000)
currentEstimate<-as.estimate(variable, distribution, lower, upper)
Create a list of two prospective estimates:
perfectInformationRevenue<-currentEstimate
revenueConst<-mean(c(currentEstimate$marginal["revenue","lower"],

currentEstimate$marginal["revenue","upper"]))
perfectInformationRevenue$marginal["revenue","distribution"]<-"const"
perfectInformationRevenue$marginal["revenue","lower"]<-revenueConst
perfectInformationRevenue$marginal["revenue","upper"]<-revenueConst
perfectInformationCosts<-currentEstimate
costsConst<-mean(c(currentEstimate$marginal["costs","lower"],

currentEstimate$marginal["costs","upper"]))
perfectInformationCosts$marginal["costs","distribution"]<-"const"
perfectInformationCosts$marginal["costs","lower"]<-costsConst

22 gompertz_yield

perfectInformationCosts$marginal["costs","upper"]<-costsConst
prospectiveEstimate<-list(perfectInformationRevenue=perfectInformationRevenue,

perfectInformationCosts=perfectInformationCosts)
Define the welfare function with two decision variables:
decisionModel<-function(x){
list(Profit=x$revenue-x$costs,

Costs=-x$costs)
}
Calculate the Expected Value of Information:
eviSimulationResult<-eviSimulation(welfare=decisionModel,

currentEstimate=currentEstimate,
prospectiveEstimate=prospectiveEstimate,
numberOfModelRuns=numberOfModelRuns,
functionSyntax="data.frameNames")

Show the simulation results:
print(sort(summary(eviSimulationResult)),decreasing=TRUE,along="Profit")

gompertz_yield Gompertz function yield prediction for perennials

Description

Yields of trees or other perennial plants have to be simulated in order to predict the outcomes of
many interventions. Unlike annual crops, however, trees normally yield nothing for a few years
after planting, following which yields gradually increase until they reach a tree-specific maximum.
This is simulated with this function, which assumes that a Gompertz function is a good way to
describe this (based on the general shape of the curve, not on extensive research...). The function
assumes that yields remain at the maximum level, once this is reached. For long simulations, this
may not be a valid assumption! The function parameters are estimated based on yield estimates
for two points in time, which the user can specify. They are described by a year number and by a
percentage of the maximum yield that is attained at that time.

Usage

gompertz_yield(max_harvest, time_to_first_yield_estimate,
time_to_second_yield_estimate, first_yield_estimate_percent,
second_yield_estimate_percent, n_years, var_CV = 0,
no_yield_before_first_estimate = TRUE)

Arguments

max_harvest maximum harvest from the tree (in number of fruits, kg or other units)
time_to_first_yield_estimate

year (or other time unit) number, for which the first yield estimate is provided
by first_yield_estimate_percent

time_to_second_yield_estimate

year (or other time unit) number, for which the second yield estimate is provided
by second_yield_estimate_percent

hist.eviSimulation 23

first_yield_estimate_percent

percentage of the maximum yield that is attained in the year (or other time unit)
given by time_to_first_yield_estimate

second_yield_estimate_percent

percentage of the maximum yield that is attained in the year (or other time unit)
given by time_to_second_yield_estimate

n_years number of years to run the simulation

var_CV coefficient indicating how much variation should be introduced into the time
series of n_targeted_per_year, annual_adoption_rate, perc_disadopt and sponta-
neous adoption. If this is one numeric value, then this value is used for all vari-
ables. If var_CV is a numeric vector with 4 elements, each of these is used to in-
troduce variation in one of these variables (in the sequence: n_targeted_per_year,
annual_adoption_rate, perc_disadopt and spontaneous adoption). The numbers
correspond to the coefficient of variation that the resulting time series should
have. The default is 0, for a time series with no artificially introduced variation.
See description of the vv function for more details on this.

no_yield_before_first_estimate

boolean variable indicating whether yields before the time unit indicated by
time_to_first_yield_estimate should be 0

Value

vector of n_years numeric values, describing the simulated yield of the perennial. This starts at 0
and, if the simulation runs for a sufficient number of years, approaches max_harvest. If var_CV>0,
this time series includes artificial variation.

Author(s)

Eike Luedeling

Examples

gompertz_yield(max_harvest=1000,
time_to_first_yield_estimate=5,
time_to_second_yield_estimate=15,
first_yield_estimate_percent=10,
second_yield_estimate_percent=90,
n_years=30,
var_CV=5,
no_yield_before_first_estimate=TRUE)

hist.eviSimulation Plot Histograms of results of an EVI simulation

Description

This function plots the histograms of the results of eviSimulation.

24 hist.eviSimulation

Usage

S3 method for class 'eviSimulation'
hist(x, breaks = 100, col = NULL,
mainSuffix = " welfare simulation result", ...,
colorQuantile = c("GREY", "YELLOW", "ORANGE", "DARK GREEN", "ORANGE",
"YELLOW", "GREY"), colorProbability = c(1, 0.95, 0.75, 0.55, 0.45,
0.25, 0.05), resultName = NULL)

Arguments

x An object of class eviSimulation.

breaks one of:

• a vector giving the breakpoints between histogram cells,
• a function to compute the vector of breakpoints,
• a single number giving the number of cells for the histogram,
• a character string naming an algorithm to compute the number of cells (see

‘Details’),
• a function to compute the number of cells.

In the last three cases the number is a suggestion only; as the breakpoints will
be set to pretty values, the number is limited to 1e6 (with a warning if it was
larger). If breaks is a function, the x vector is supplied to it as the only argument
(and the number of breaks is only limited by the amount of available memory).

col a colour to be used to fill the bars. The default of NULL yields unfilled bars.

mainSuffix character: Suffix of the main titles of the histograms.

... Further arguments to be passed to hist.

colorQuantile character vector: encoding the colors of the quantiles defined in argument
colorProbability.

colorProbability

numeric vector: defines the quantiles that shall be distinguished by the colors
chosen in argument colorQuantile. Must be of the same length as colorQuantile.

resultName character: indicating the name of the component of the simulation function
(model_function) which results histogram shall be generated. If model_function
is single valued, no name needs to be supplied. Otherwise, one valid name has
to be specified. Defaults to NULL.

Value

an object of class "histogram". For details see hist.

See Also

eviSimulation, hist. For a list of colors available in R see colors.

hist.mcSimulation 25

hist.mcSimulation Plot Histogram of results of a Monte Carlo Simulation

Description

This function plots the histograms of the results of mcSimulation.

Usage

S3 method for class 'mcSimulation'
hist(x, breaks = 100, col = NULL, xlab = NULL,
main = paste("Histogram of ", xlab), ..., colorQuantile = c("GREY",
"YELLOW", "ORANGE", "DARK GREEN", "ORANGE", "YELLOW", "GREY"),
colorProbability = c(1, 0.95, 0.75, 0.55, 0.45, 0.25, 0.05),
resultName = NULL)

Arguments

x An object of class mcSimulation.

breaks one of:

• a vector giving the breakpoints between histogram cells,
• a function to compute the vector of breakpoints,
• a single number giving the number of cells for the histogram,
• a character string naming an algorithm to compute the number of cells (see

‘Details’),
• a function to compute the number of cells.

In the last three cases the number is a suggestion only; as the breakpoints will
be set to pretty values, the number is limited to 1e6 (with a warning if it was
larger). If breaks is a function, the x vector is supplied to it as the only argument
(and the number of breaks is only limited by the amount of available memory).

col a colour to be used to fill the bars. The default of NULL yields unfilled bars.

xlab character: x label of the histogram. If it is not provided, i.e. equals NULL the
name of the chosen variable by argument resultName is used.

main character: main title of the histogram.

... Further arguments to be passed to hist.

colorQuantile character vector: encoding the colors of the quantiles defined in argument
colorProbability.

colorProbability

numeric vector: defines the quantiles that shall be distinguished by the colors
chosen in argument colorQuantile. Must be of the same length as colorQuantile.

resultName character: indicating the name of the component of the simulation function
(model_function) which results histogram shall be generated. If model_function
is single valued, no name needs to be supplied. Otherwise, one valid name has
to be specified. Defaults to NULL.

26 hist.welfareDecisionAnalysis

Value

an object of class "histogram". For details see hist.

See Also

mcSimulation, hist. For a list of colors available in R see colors.

hist.welfareDecisionAnalysis

Plot Histogram of results of a Welfare Decision Analysis

Description

This function plots the histograms of the results of welfareDecisionAnalysis.

Usage

S3 method for class 'welfareDecisionAnalysis'
hist(x, breaks = 100, col = NULL,
xlab = NULL, main = paste("Histogram of ", xlab), ...,
colorQuantile = c("GREY", "YELLOW", "ORANGE", "DARK GREEN", "ORANGE",
"YELLOW", "GREY"), colorProbability = c(1, 0.95, 0.75, 0.55, 0.45,
0.25, 0.05), resultName = NULL)

Arguments

x An object of class welfareDecisionAnalysis.

breaks one of:

• a vector giving the breakpoints between histogram cells,
• a function to compute the vector of breakpoints,
• a single number giving the number of cells for the histogram,
• a character string naming an algorithm to compute the number of cells (see

‘Details’),
• a function to compute the number of cells.

In the last three cases the number is a suggestion only; as the breakpoints will
be set to pretty values, the number is limited to 1e6 (with a warning if it was
larger). If breaks is a function, the x vector is supplied to it as the only argument
(and the number of breaks is only limited by the amount of available memory).

col a colour to be used to fill the bars. The default of NULL yields unfilled bars.

xlab character: x label of the histogram. If it is not provided, i.e. equals NULL the
name of the chosen variable by argument resultName is used.

main character: main title of the histogram.

... Further arguments to be passed to hist.

individualEvpiSimulation 27

colorQuantile character vector: encoding the colors of the quantiles defined in argument
colorProbability.

colorProbability

numeric vector: defines the quantiles that shall be distinguished by the colors
chosen in argument colorQuantile. Must be of the same length as colorQuantile.

resultName character: indicating the name of the component of the simulation function
(model_function) which results histogram shall be generated. If model_function
is single valued, no name needs to be supplied. Otherwise, one valid name has
to be specified. Defaults to NULL.

Value

an object of class "histogram". For details see hist.

See Also

welfareDecisionAnalysis, hist. For a list of colors available in R see colors.

individualEvpiSimulation

Individual Expected Value of Perfect Information Simulation

Description

The Individual Expected Value of Perfect Information (Individual EVPI) is calculated based on a
Monte Carlo simulation of the values of two different decision alternatives.

Usage

individualEvpiSimulation(welfare, currentEstimate,
perfectProspectiveNames = row.names(currentEstimate),
perfectProspectiveValues = colMeans(as.data.frame(random(rho =
currentEstimate, n = numberOfModelRuns, method = randomMethod,
relativeTolerance = relativeTolerance))[perfectProspectiveNames]),
numberOfModelRuns, randomMethod = "calculate",
functionSyntax = "data.frameNames", relativeTolerance = 0.05,
verbosity = 0)

Arguments

welfare either a function or a list with two functions, i.e. list(p1,p2). In the
first case the function is the net benefit (or welfare) of project approval (PA) vs.
the status quo (SQ). In the second case the element p1 is the function valuing
the first project and the element p2 valuing the second project, viz. the welfare
function of p1 and p2 respectively.

28 individualEvpiSimulation

currentEstimate

estimate: describing the distribution of the input variables as currently being
estimated.

perfectProspectiveNames

character vector: input variable names that are assumed to be known per-
fectly with prospective information.

perfectProspectiveValues

numeric vector: of the same length as perfectProspectiveNames with the
corresponding values assumed to be known perfectly.

numberOfModelRuns

integer: The number of running the welfare model for the underlying Monte
Carlo simulation.

randomMethod character: The method to be used to sample the distribution representing the
input estimate. For details see option method in random.estimate.

functionSyntax character: function syntax used in the welfare function(s). For details see
mcSimulation.

relativeTolerance

numeric: the relative tolerance level of deviation of the generated confidence in-
terval from the specified interval. If this deviation is greater than relativeTolerance
a warning is given.

verbosity integer: if 0 the function is silent; the larger the value the more verbose is
output information.

Details

The Individual EVPI is defined as the EVI with respect to a prospective information that assumes
perfect knowledge on one particular variable.

Value

An object of class eviSimulation with the following elements:

$current welfareDecisionAnalysis object for currentEstimate

$prospective welfareDecisionAnalysis object for single perfectProspectiveNames or a list
of welfareDecisionAnalysis objects for several perfectProspectiveNames.

$evi Expected Value of Information(s) (EVI)(s) gained by the perfect knowledge of individual
variable(s) w.r.t. the current estimate.

See Also

eviSimulation, welfareDecisionAnalysis, mcSimulation, estimate

Examples

Number of running the underlying welfare model:
n=10000
Create the current estimate from text:
estimateText<-"variable, distribution, lower, upper

make_CPT 29

revenue1, posnorm, 100, 1000
revenue2, posnorm, 50, 2000
costs1, posnorm, 50, 2000
costs2, posnorm, 100, 1000"

currentEstimate<-as.estimate(read.csv(header=TRUE, text=estimateText,
strip.white=TRUE, stringsAsFactors=FALSE))

The welfare function:
profitModel <- function(x){
list(Profit=x$revenue1 + x$revenue2 - x$costs1 - x$costs2)

}
Calculate the Individual EVPI:
individualEvpiResult<-individualEvpiSimulation(welfare=profitModel,

currentEstimate=currentEstimate,
numberOfModelRuns=n,
functionSyntax="data.frameNames")

Show the simulation results:
print(sort(summary(individualEvpiResult)),decreasing=TRUE,along="Profit")
hist(individualEvpiResult, breaks=100)

make_CPT Make Conditional Probability tables using the likelihood method

Description

This function creates Conditional Probability Tables for Bayesian Network nodes from parameters
that (for complex nodes) can be more easily elicited from experts than the full table. The function
uses the Likelihood method, as described by Sjoekvist S & Hansson F, 2013. Tables are created from
three the relative weights of all parents, rankings for all parents, a parameter (b) for the sensitivity
of the child node and a prior distribution (for the child node).

Usage

make_CPT(parent_effects, parent_weights, b, child_prior,
ranking_child = NULL, child_states = NULL, parent_names = NULL,
parent_states = NULL)

Arguments

parent_effects list of vectors describing the effects of all parent node states on the value of
the child variable. For example, if parent 1 has four states, the respective vector
might look like this: c(3,1,0,0). This would imply that the first state of the parent
is strongly associated with high values for the child, the second less strongly, and
the 3rd and 4th value are associated with equally low values.

parent_weights weight factors for the parent nodes

b parameter for the strength of the parent’s influence on the child node. A value
of 1 causes no response; 3 is quite strong.

child_prior prior distribution for the states of the child node.

30 mcSimulation

ranking_child vector of length length(child_prior) containing rankings for the child node states
on a -1..1 scale. If this is null, evenly spaced rankings on this -1..1 scale are
assigned automatically.

child_states optional vector specifying the names of the child states.

parent_names optional vector specifying parent node names.

parent_states list of the same structure as parent_effects containing names for all states of all
parents.

Value

list of two data.frames: 1) Conditional Probability Table (CPT); 2) legend table specifying which
states of the parent nodes belong to which column in the CPT.

Author(s)

Eike Luedeling

References

Sjoekvist S & Hansson F, 2013. Modelling expert judgement into a Bayesian Belief Network - a
method for consistent and robust determination of conditional probability tables. Master’s thesis,
Faculty of Engineering, Lund University; http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=3866733&fileOId=3866740

Examples

make_CPT(parent_effects=list(c(-1,1),c(-0.5,0,0.5)),
parent_weights=c(3,1),b=1.5,child_prior=c(.2,.6,.2),child_states=c("a","b","c"))

test_CPT<-make_CPT(parent_effects=list(c(-1,3),c(-4,2),c(-2,3,4),c(1,2,3)),
parent_weights=c(1,1,1,1),b=2,child_prior=c(1,2,3,4,5),
child_states=c("a","b","c","d","e"),

parent_states=list(c("low","high"),c("A","B"),c(1,2,3),c("Hi","Lunch","Bye")))

mcSimulation Perform a Monte Carlo simulation.

Description

This function generates a random sample of an output distribution defined as the transformation of
an input distribution by a mathematical model, i.e. a mathematical function. This is called a Monte
Carlo simulation. For details cf. below.

mcSimulation 31

Usage

mcSimulation(estimate, model_function, ..., numberOfModelRuns,
randomMethod = "calculate", functionSyntax = "data.frameNames",
relativeTolerance = 0.05, verbosity = 0)

Arguments

estimate estimate: estimate of the joint probability distribution of the input variables.

model_function function: The function that transforms the input distribution. It has to return a
single numeric value or a list with named numeric values.

... Optional arguments of model_function.
numberOfModelRuns

The number of times running the model function.

randomMethod character: The method to be used to sample the distribution representing the
input estimate. For details see option method in random.estimate.

functionSyntax character: The syntax which has to be used to implement the model function.
Possible values are "data.frameNames", "matrixNames" or "plainNames".
Details are given below.

relativeTolerance

numeric: the relative tolerance level of deviation of the generated confidence in-
terval from the specified interval. If this deviation is greater than relativeTolerance
a warning is given.

verbosity integer: if 0 the function is silent; the larger the value the more verbose is
output information.

Details

This method solves the following problem. Given a multivariate random variable x = (x1, . . . , xk)
with joint probability distribution P , i.e.

x ∼ P.

Then the continuous function
f : Rk → Rl, y = f(x)

defines another random variable with distribution

y ∼ f(P).

Given a probability density ρ of x that defines P the problem is the determination of the probability
density φ that defines f(P). This method samples the probability density φ of y as follows: The
input distributionP is provided as estimate. From estimate a sample x with numberOfModelRuns
is generated using random.estimate. Then the function values y = f(x) are calculated, where f
is model_function.

functionSyntax defines the syntax of model_function, which has to be used, as follows:

"data.frameNames" The model function is constructed, e.g. like this:

32 mcSimulation

profit<-function(x){
x[["revenue"]]-x[["costs"]]

}

or like this:

profit<-function(x){
x$revenue-x$costs

}

"matrixNames" The model function is constructed, e.g. like this:

profit<-function(x){
x[,"revenue"]-x[,"costs"]

}

"plainNames" model_function is constructed, e.g. like this:

profit<-function(x){
revenue-costs

}

Note: this is the slowest of the possibilities for functionSyntax.

Value

An object of class mcSimulation, which is a list with elements:

$x data.frame containing the sampled x− (input) values which are generated from estimate.

$y data.frame containing the simulated y− (output) values, i.e. the model function values for x.

See Also

print.mcSimulation, summary.mcSimulation, hist.mcSimulation, estimate, random.estimate

Examples

###
Example 1 (Creating the estimate from the command line):
###
Create the estimate object:
variable=c("revenue","costs")
distribution=c("norm","norm")
lower=c(10000, 5000)
upper=c(100000, 50000)
costBenefitEstimate<-as.estimate(variable, distribution, lower, upper)
(a) Define the model function without name for the return value:
profit1<-function(x){

x$revenue-x$costs
}

mcSimulation 33

Perform the Monte Carlo simulation:
predictionProfit1<-mcSimulation(estimate=costBenefitEstimate,

model_function=profit1,
numberOfModelRuns=10000,
functionSyntax="data.frameNames")

Show the simulation results:
print(summary(predictionProfit1))
hist(predictionProfit1,xlab="Profit")
###
(b) Define the model function with a name for the return value:
profit1<-function(x){

list(Profit=x$revenue-x$costs)
}
Perform the Monte Carlo simulation:
predictionProfit1<-mcSimulation(estimate=costBenefitEstimate,

model_function=profit1,
numberOfModelRuns=10000,
functionSyntax="data.frameNames")

Show the simulation results:
print(summary(predictionProfit1, classicView=TRUE))
hist(predictionProfit1)
###
(c) Using plain names in the model function syntax
profit1<-function(){

list(Profit=revenue-costs)
}
Perform the Monte Carlo simulation:
predictionProfit1<-mcSimulation(estimate=costBenefitEstimate,

model_function=profit1,
numberOfModelRuns=1000,
functionSyntax="plainNames")

Show the simulation results:
print(summary(predictionProfit1, probs=c(0.05,0.50,0.95)))
hist(predictionProfit1)
###
(d) Using plain names in the model function syntax and
define the model function without name for the return value:
profit1<-function() revenue-costs
Perform the Monte Carlo simulation:
predictionProfit1<-mcSimulation(estimate=costBenefitEstimate,

model_function=profit1,
numberOfModelRuns=1000,
functionSyntax="plainNames")

Show the simulation results:
print(summary(predictionProfit1, probs=c(0.05,0.50,0.95)))
hist(predictionProfit1, xlab="Profit")
###
Example 2(Reading the estimate from file):
###
Define the model function:
profit2<-function(x){

Profit<-x[["sales"]]*(x[["productprice"]] - x[["costprice"]])
list(Profit=Profit)

34 paramtnormci_fit

}
Read the estimate of sales, productprice and costprice from file:
inputFileName=system.file("extdata","profit-4.csv",package="decisionSupport")
parameterEstimate<-estimate_read_csv(fileName=inputFileName)
print(parameterEstimate)
Perform the Monte Carlo simulation:
predictionProfit2<-mcSimulation(estimate=parameterEstimate,

model_function=profit2,
numberOfModelRuns=10000,
functionSyntax="data.frameNames")

Show the simulation results:
print(summary(predictionProfit2))
hist(predictionProfit2)

paramtnormci_fit Fit parameters of truncated normal distribution based on a confidence
interval.

Description

This function fits the distribution parameters, i.e. mean and sd, of a truncated normal distribution
from an arbitrary confidence interval and, optionally, the median.

Usage

paramtnormci_fit(p, ci, median = mean(ci), lowerTrunc = -Inf,
upperTrunc = Inf, relativeTolerance = 0.05,
fitMethod = "Nelder-Mead", ...)

Arguments

p numeric 2-dimensional vector; probabilities of upper and lower bound of the
corresponding confidence interval.

ci numeric 2-dimensional vector; lower, i.e ci[[1]], and upper bound, i.e ci[[2]],
of the confidence interval.

median if NULL: truncated normal is fitted only to lower and upper value of the confi-
dence interval; if numeric: truncated normal is fitted on the confidence interval
and the median simultaneously. For details cf. below.

lowerTrunc numeric; lower truncation point of the distribution (>= -Inf).

upperTrunc numeric; upper truncation point of the distribution (<= Inf).
relativeTolerance

numeric; the relative tolerance level of deviation of the generated probability
levels from the specified confidence interval. If the relative deviation is greater
than relativeTolerance a warning is given.

fitMethod optimization method used in constrOptim.

... further parameters to be passed to constrOptim.

paramtnormci_numeric 35

Details

For details of the truncated normal distribution see tnorm.

The cumulative distribution of a truncated normal Fµ,σ(x) gives the probability that a sampled value
is less than x. This is equivalent to saying that for the vector of quantiles q = (qp1 , . . . , qpk) at the
corresponding probabilities p = (p1, . . . , pk) it holds that

pi = Fµ,σ(qpi), i = 1, . . . , k

In the case of arbitrary postulated quantiles this system of equations might not have a solution in µ
and σ. A least squares fit leads to an approximate solution:

k∑
i=1

(pi − Fµ,σ(qpi))
2 = min

defines the parameters µ and σ of the underlying normal distribution. This method solves this
minimization problem for two cases:

1. ci[[1]] < median < ci[[2]]: The parameters are fitted on the lower and upper value of
the confidence interval and the median, formally:
k = 3
p1=p[[1]], p2=0.5 and p3=p[[2]];
qp1=ci[[1]], q0.5=median and qp3=ci[[2]]

2. median=NULL: The parameters are fitted on the lower and upper value of the confidence inter-
val only, formally:
k = 2
p1=p[[1]], p2=p[[2]];
qp1=ci[[1]], qp2=ci[[2]]

The (p[[2]]-p[[1]]) - confidence interval must be symmetric in the sense that p[[1]] + p[[2]] = 1.

Value

A list with elements mean and sd, i.e. the parameters of the underlying normal distribution.

See Also

tnorm, constrOptim

paramtnormci_numeric Return parameters of truncated normal distribution based on a confi-
dence interval.

Description

This function calculates the distribution parameters, i.e. mean and sd, of a truncated normal distri-
bution from an arbitrary confidence interval.

36 plainNames2data.frameNames

Usage

paramtnormci_numeric(p, ci, lowerTrunc = -Inf, upperTrunc = Inf,
relativeTolerance = 0.05, rootMethod = "probability", ...)

Arguments

p numeric 2-dimensional vector; probabilities of lower and upper bound of the
corresponding confidence interval.

ci numeric 2-dimensional vector; lower, i.e ci[[1]], and upper bound, i.e ci[[2]],
of the confidence interval.

lowerTrunc numeric; lower truncation point of the distribution (>= -Inf).

upperTrunc numeric; upper truncation point of the distribution (<= Inf).
relativeTolerance

numeric; the relative tolerance level of deviation of the generated confidence in-
terval from the specified interval. If this deviation is greater than relativeTolerance
a warning is given.

rootMethod character; if ="probability" the equation defining the parameters mean and
sd is the difference between calculated and given probabilities of the confidence
interval; if ="quantile" the equation defining the parameters is the difference
between calculated and given upper and lower value of the confidence interval.

... Further parameters passed to nleqslv.

Details

For details of the truncated normal distribution see tnorm. #’ @importFrom nleqslv nleqslv

Value

A list with elements mean and sd, i.e. the parameters of the underlying normal distribution.

See Also

tnorm, nleqslv

plainNames2data.frameNames

Transform model function variable names: plain to data.frame names.

Description

The variable names of a function are transformed from plain variable names to data.frame names of
the form x$<globalName>.

Usage

plainNames2data.frameNames(modelFunction, plainNames)

plainNames2data.frameNames 37

Arguments

modelFunction a function whose body contains variables with plain names. The function must
not contain any arguments.

plainNames a character vector containing the names of the variables that shall be trans-
formed.

Details

The input function must be of the form:

modelFunction<-function(){
...
<expression with variable1>
...

}

Value

The transformed function which is of the form:

function(x){
...
<expression with x$variable1>
...

}

Warning

If there are local functions within the function modelFunction defined, whose arguments have
identical names to any of the plainNames the function fails!

See Also

mcSimulation, estimate

Examples

profit1<-function(){
list(Profit=revenue-costs)

}
profit2<-plainNames2data.frameNames(modelFunction=profit1,

plainNames=c("revenue", "costs"))
print(profit2)
is.function(profit2)
profit2(data.frame("revenue"=10,"costs"=2))

38 plsr.mcSimulation

plsr.mcSimulation Partial Least Squares Regression (PLSR) of Monte Carlo simulation
results.

Description

Perform a Partial Least Squares Regression (PLSR) of Monte Carlo simulation results.

Usage

plsr.mcSimulation(object, resultName = NULL,
variables.x = names(object$x), method = "oscorespls", scale = TRUE,
ncomp = 2, ...)

Arguments

object An object of class mcSimulation.

resultName character: indicating the name of the component of the simulation function
(model_function) whose results histogram shall be generated. If model_function
is single valued, no name needs to be supplied. Otherwise, one valid name has
to be specified. Defaults to NULL.

variables.x character or character vector: Names of the components of the input vari-
ables to the simulation function, i.e. the names of the variables in the input
estimate which random sampling results shall be displayed. Defaults to all
components.

method the multivariate regression method to be used. If "model.frame", the model
frame is returned.

scale numeric vector, or logical. If numeric vector, X is scaled by dividing each
variable with the corresponding element of scale. If scale is TRUE,X is scaled
by dividing each variable by its sample standard deviation. If cross-validation is
selected, scaling by the standard deviation is done for every segment.

ncomp the number of components to include in the model (see below).

... further arguments to be passed to plsr.

Value

An object of class mvr.

See Also

mcSimulation, plsr, summary.mvr, biplot.mvr, coef.mvr, plot.mvr,

print.mcSimulation 39

print.mcSimulation Print Basic Results from Monte Carlo Simulation.

Description

This function prints basic results from Monte Carlo simulation and returns it invisible.

Usage

S3 method for class 'mcSimulation'
print(x, ...)

Arguments

x An object of class mcSimulation.

... Further arguments to be passed to print.data.frame.

See Also

mcSimulation, print.data.frame

print.summary.eviSimulation

Print the Summarized EVI Simulation Results.

Description

This function prints the summary of eviSimulation generated by summary.eviSimulation.

Usage

S3 method for class 'summary.eviSimulation'
print(x, ...)

Arguments

x An object of class summary.eviSimulation.

... Further arguments to be passed to print.default and
print.summary.welfareDecisionAnalysis.

See Also

eviSimulation, print.summary.welfareDecisionAnalysis.

40 print.summary.welfareDecisionAnalysis

print.summary.mcSimulation

Print the summary of a Monte Carlo simulation.

Description

This function prints the summary of of mcSimulation obtained by summary.mcSimulation.

Usage

S3 method for class 'summary.mcSimulation'
print(x, ...)

Arguments

x An object of class mcSimulation.

... Further arguments to be passed to print.data.frame.

See Also

mcSimulation, summary.mcSimulation, print.data.frame

print.summary.welfareDecisionAnalysis

Print the summarized Welfare Decision Analysis results.

Description

This function prints the summary of a Welfare Decision Analysis generated by
summary.welfareDecisionAnalysis.

Usage

S3 method for class 'summary.welfareDecisionAnalysis'
print(x, ...)

Arguments

x An object of class summary.welfareDecisionAnalysis.

... Further arguments to print.data.frame.

See Also

welfareDecisionAnalysis, summary.welfareDecisionAnalysis, print.data.frame.

random 41

random Quantiles or empirically based generic random number generation.

Description

These functions generate random numbers for parametric distributions, parameters of which are
determined by given quantiles or for distributions purely defined empirically.

Usage

random(rho, n, method, relativeTolerance, ...)

Default S3 method:
random(rho = list(distribution = "norm", probabilities

= c(0.05, 0.95), quantiles = c(-qnorm(0.95), qnorm(0.95))), n,
method = "fit", relativeTolerance = 0.05, ...)

S3 method for class 'vector'
random(rho = runif(n = n), n, method = NULL,
relativeTolerance = NULL, ...)

S3 method for class 'data.frame'
random(rho = data.frame(uniform = runif(n = n)), n,
method = NULL, relativeTolerance = NULL, ...)

Arguments

rho Distribution to be randomly sampled.

n integer: Number of observations to be generated

method character: Particular method to be used for random number generation.
relativeTolerance

numeric: the relative tolerance level of deviation of the generated confidence in-
terval from the specified interval. If this deviation is greater than relativeTolerance
a warning is given.

... Optional arguments to be passed to the particular random number generating
function.

Methods (by class)

• default: Quantiles based univariate random number generation.

Arguments rho rho list: Distribution to be randomly sampled. The list elements are
$distribution, $probabilities and $quantiles. For details cf. below.

method character: Particular method to be used for random number generation. Cur-
rently only method rdistq_fit{fit} is implemented which is the default.

42 random

relativeTolerance numeric: the relative tolerance level of deviation of the gener-
ated confidence interval from the specified interval. If this deviation is greater than
relativeTolerance a warning is given.

... Optional arguments to be passed to the particular random number generating func-
tion, i.e. rdistq_fit.

Details The distribution family is determined by rho[["distribution"]]. For the possi-
bilities cf. rdistq_fit.

rho[["probabilities"]] and [[rho"quantiles"]] are numeric vectors of the same
length. The first defines the probabilities of the quantiles, the second defines the
quantiles values which determine the parametric distribution.

Value A numeric vector of length n containing the generated random numbers.
See Also rdistq_fit

• vector: Univariate random number generation by drawing from a given empirical sample.

Arguments rho vector: Univariate empirical sample to be sampled from.
method for this class no impact
relativeTolerance for this class no impact
... for this class no impact

Value A numeric vector of length n containing the generated random numbers.
See Also sample

• data.frame: Multivariate random number generation by drawing from a given empirical
sample.

Arguments rho data.frame: Multivariate empirical sample to be sampled from.
method for this class no impact
relativeTolerance for this class no impact
... for this class no impact

Value A data.frame with n rows containing the generated random numbers.
See Also sample

Examples

x<-random(n=10000)
hist(x,breaks=100)
mean(x)
sd(x)

rho<-list(distribution="norm",
probabilities=c(0.05,0.4,0.8),
quantiles=c(-4, 20, 100))

x<-random(rho=rho, n=10000, tolConv=0.01)
hist(x,breaks=100)
quantile(x,p=rho[["probabilities"]])

random.estimate 43

random.estimate Generate random numbers for an estimate.

Description

This function generates random numbers for general multivariate distributions that are defined as
an estimate.

Usage

S3 method for class 'estimate'
random(rho, n, method = "calculate",
relativeTolerance = 0.05, ...)

Arguments

rho estimate: multivariate distribution to be randomly sampled.

n integer:Number of observations to be generated.

method character: Particular method to be used for random number generation.
relativeTolerance

numeric: the relative tolerance level of deviation of the generated confidence in-
terval from the specified interval. If this deviation is greater than relativeTolerance
a warning is given.

... Optional arguments to be passed to the particular random number generating
function.

Details

Generation of uncorrelated components: Implementation: random.estimate1d

Generation of correlated components: Implementation: rmvnorm90ci_exact

See Also

estimate, random.estimate1d, random

Examples

variable=c("revenue","costs")
distribution=c("norm","norm")
lower=c(10000, 5000)
upper=c(100000, 50000)
estimateObject<-as.estimate(variable, distribution, lower, upper)
x<-random(rho=estimateObject, n=10000)
apply(X=x, MARGIN=2, FUN=quantile, probs=c(0.05, 0.95))
cor(x)
colnames(x)

44 random.estimate1d

summary(x)
hist(x[,"revenue"])
hist(x[,"costs"])

Create an estimate with median and method information:
estimateObject<-estimate(c("posnorm", "lnorm"),

c(4, 4),
c(50, 10),

variable=c("revenue", "costs"),
median = c("mean", NA),
method = c("fit", ""))

Sample random values for this estimate:
x<-random(rho=estimateObject, n=10000)
Check the results
apply(X=x, MARGIN=2, FUN=quantile, probs=c(0.05, 0.95))
summary(x)
hist(x[,"revenue"], breaks=100)
hist(x[,"costs"], breaks=100)

random.estimate1d Generate univariate random numbers defined by a 1-d estimate.

Description

This function generates random numbers for univariate parametric distributions, whose parameters
are determined by a one dimensional estimate (estimate1d).

Usage

S3 method for class 'estimate1d'
random(rho, n, method = "calculate",
relativeTolerance = 0.05, ...)

Arguments

rho estimate1d: Univariate distribution to be randomly sampled.
n integer: Number of observations to be generated
method character: Particular method to be used for random number generation. It can

be either "calculate" (the default) or "fit". Details below.
relativeTolerance

numeric: the relative tolerance level of deviation of the generated confidence in-
terval from the specified interval. If this deviation is greater than relativeTolerance
a warning is given.

... Optional arguments to be passed to the particular random number generating
function (cf. below). @details
rho[["distribution"]]: The follwing table shows the available distributions

and the implemented generation method:

random.estimate1d 45

rho[["distribution"]] Distribution Name method
"const" Deterministic case not applicable
"norm" Normal calculate, fit
"posnorm" Positive normal calculate, fit
"tnorm_0_1" 0-1-truncated normal calculate, fit
"beta" Beta fit
"cauchy" Cauchy fit
"logis" Logistic fit
"t" Student t fit
"chisq" Central Chi-Squared fit
"chisqnc" Non-central Chi-Squared fit
"exp" Exponential fit
"f" Central F fit
"gamma" Gamma with scale=1/rate fit
"lnorm" Log Normal calculate, fit
"unif" Uniform calculate, fit
"weibull" Weibull fit
"triang" Triangular fit
"gompertz" Gompertz fit
"pert" (Modified) PERT fit

For distribution="const" the argument method is obsolete, as a con-
stant is neither fitted nor calculated.

rho[["method"]] If supplied, i.e. !is.null(rho[["method"]]), this value
overwrites the function argument method.

method This parameter defines, how the parameters of the distribution to be
sampled are derived from rho[["lower"]], rho[["upper"]] and possibly
rho[["median"]]. Possibilities are "calculate" (the default) or "fit":
method="calculate" The parameters are calculated if possible using the

exact (analytical) formula or, otherwise, numerically. This calculation
of the distribution parameters is independent of rho[["median"]] be-
ing supplied or not. For the implemented distributions, it only depends
on rho[["lower"]] and rho[["upper"]]. However, if it is supplied,
i.e. is.numeric(rho[["median"]]), a check is performed, if the
relative deviation of the generated median from rho[["median"]] is
greater than relativeTolerance. In this case a warning is given.

method="fit" The parameters are obtained by fitting the distribution on
the supplied quantiles. Given that rho[["median"]]==NULL the distri-
bution is fitted only to lower and upper and a warning is given; due to
the used numerical procedure, the calculated parameters might define
a distribution which strongly deviates from the intended one. There is
larger control on the shape of the distribution to be generated by sup-
plying the estimate of the median. If is.numeric(rho[["median"]])
the distribution is fitted to lower, upper and median.

... For passing further parameters to the function which generates the random
numbers, cf. the above table and follow the link in the column method.

46 random_state

See Also

estimate1d; For method="calculate": rdist90ci_exact; for method="fit": rdistq_fit; for
both methods: rposnorm90ci and rtnorm_0_1_90ci. For the default method: random.

random_state Draw a random state for a categorical variable

Description

This function draws a sample from a user-defined frequency distribution for a categorical variable.

Usage

random_state(states, probs)

Arguments

states character vector containing state names.

probs numeric vector containing probabilities for the states. If these do not add up to
1, they are automatically normalized.

Value

one of the states, drawn randomly according to the specified probabilities.

Author(s)

Eike Luedeling

Examples

random_state(states=c("very low","low","medium","high","very high"),
probs=c(1,1,2,1,1))

rdist90ci_exact 47

rdist90ci_exact 90%-confidence interval based univariate random number generation
(by exact parameter calculation).

Description

This function generates random numbers for a set of univariate parametric distributions from given
90% confidence interval. Internally, this is achieved by exact, i.e. analytic, calculation of the
parameters for the individual distribution from the given 90% confidence interval.

Usage

rdist90ci_exact(distribution, n, lower, upper)

Arguments

distribution character; A character string that defines the univariate distribution to be ran-
domly sampled. For possible options cf. section Details.

n Number of generated observations.

lower numeric; lower bound of the 90% confidence interval.

upper numeric; upper bound of the 90% confidence interval.

Details

The following table shows the available distributions and their identification (option: distribution)
as a character string:

distribution Distribution Name Requirements
"const" Deterministic case lower == upper
"norm" Normal lower < upper
"lnorm" Log Normal 0 < lower < upper
"unif" Uniform lower < upper

Parameter formulae: We use the notation: l=lower and u=upper; Φ is the cumulative dis-
tribution function of the standard normal distribution and Φ−1 its inverse, which is the quantile
function of the standard normal distribution.

distribution="norm": The formulae for µ and σ, viz. the mean and standard deviation, re-
spectively, of the normal distribution are µ = l+u

2 and σ = µ−l
Φ−1(0.95) .

distribution="unif": For the minimum a and maximum b of the uniform distribution U[a,b]

it holds that a = l − 0.05(u− l) and b = u+ 0.05(u− l).

distribution="lnorm": The density of the log normal distribution is f(x) = 1√
2πσx

exp(− (ln(x)−µ)2

2σ2)

for x > 0 and f(x) = 0 otherwise. Its parameters are determined by the confidence interval
via µ = ln(l)+ln(u)

2 and σ = 1
Φ−1(0.95) (µ − ln(l)). Note the correspondence to the formula

for the normal distribution.

48 rdistq_fit

Value

A numeric vector of length n with the sampled values according to the chosen distribution.

In case of distribution="const", viz. the deterministic case, the function returns: rep(lower, n).

Examples

Generate uniformly distributed random numbers:
lower=3
upper=6
hist(r<-rdist90ci_exact(distribution="unif", n=10000, lower=lower, upper=upper),breaks=100)
print(quantile(x=r, probs=c(0.05,0.95)))
print(summary(r))

Generate log normal distributed random numbers:
hist(r<-rdist90ci_exact(distribution="lnorm", n=10000, lower=lower, upper=upper),breaks=100)
print(quantile(x=r, probs=c(0.05,0.95)))
print(summary(r))

rdistq_fit Quantiles based univariate random number generation (by parameter
fitting).

Description

This function generates random numbers for a set of univariate parametric distributions from given
quantiles. Internally, this is achieved by fitting the distribution function to the given quantiles.

Usage

rdistq_fit(distribution, n, percentiles = c(0.05, 0.5, 0.95), quantiles,
relativeTolerance = 0.05, tolConv = 0.001, fit.weights = rep(1,
length(percentiles)), verbosity = 1)

Arguments

distribution A character string that defines the univariate distribution to be randomly sam-
pled.

n Number of generated observations.

percentiles Numeric vector giving the percentiles.

quantiles Numeric vector giving the quantiles.
relativeTolerance

numeric; the relative tolerance level of deviation of the generated individual per-
centiles from the specified percentiles. If any deviation is greater than relativeTolerance
a warning is given.

tolConv positive numerical value, the absolute convergence tolerance for reaching zero
by fitting distributions get.norm.par will be shown.

rdistq_fit 49

fit.weights numerical vector of the same length as a probabilities vector p containing posi-
tive values for weighting quantiles. By default all quantiles will be weighted by
1.

verbosity integer; if 0 the function is silent; the larger the value the more verbose is the
output information.

Details

The following table shows the available distributions and their identification (option: distribution)
as a character string:

distribution Distribution Name length(quantiles) Necessary Package
"norm" Normal >=2
"beta" Beta >=2
"cauchy" Cauchy >=2
"logis" Logistic >=2
"t" Student t >=1
"chisq" Central Chi-Squared >=1
"chisqnc" Non-central Chi-Squared >=2
"exp" Exponential >=1
"f" Central F >=2
"gamma" Gamma with scale=1/rate >=2
"lnorm" Log Normal >=2
"unif" Uniform ==2
"weibull" Weibull >=2
"triang" Triangular >=3 mc2d
"gompertz" Gompertz >=2 eha
"pert" (Modified) PERT >=4 mc2d
"tnorm" Truncated Normal >=4 msm

percentiles and quantiles must be of the same length. percentiles must be >=0 and <=1.

The default for percentiles is 0.05, 0.5 and 0.95, so for the default, the quantiles argument should
be a vector with 3 elements. If this is to be longer, the percentiles argument has to be adjusted to
match the length of quantiles.

The fitting of the distribution parameters is done using rriskFitdist.perc.

Value

A numeric vector of length n with the sampled values according to the chosen distribution.

See Also

rriskFitdist.perc

Examples

Fit a log normal distribution to 3 quantiles:
if (requireNamespace("rriskDistributions", quietly = TRUE)){

50 row.names.estimate

percentiles<-c(0.05, 0.5, 0.95)
quantiles=c(1,3,15)
hist(r<-rdistq_fit(distribution="lnorm", n=10000, quantiles=quantiles),breaks=100)
print(quantile(x=r, probs=percentiles))

}

rmvnorm90ci_exact 90%-confidence interval multivariate normal random number genera-
tion.

Description

This function generates normally distributed multivariate random numbers which parameters are
determined by the 90%-confidence interval. The calculation of mean and sd is exact.

Usage

rmvnorm90ci_exact(n, lower, upper, correlationMatrix)

Arguments

n integer: Number of observations to be generated.

lower numeric vector: lower bound of the 90% confidence interval.

upper numeric vector: upper bound of the 90% confidence interval.
correlationMatrix

numeric matrix: symmetric matrix which is the correlation matrix of the mul-
tivariate normal distribution. In particular, all diagonal elements must be equal
to 1.

See Also

random, rmvnorm

row.names.estimate Get and set attributes of an estimate object.

Description

row.names.estimate returns the variable names of an estimate object which is identical to
row.names(x$marginal).

names.estimate returns the column names of an estimate object which is identical to names(x$marginal).

corMat.estimate returns the full correlation matrix of an estimate object.

'corMat<-.estimate' replaces the correlation matrix of an estimate object.

rtnorm90ci 51

Usage

S3 method for class 'estimate'
row.names(x)

S3 method for class 'estimate'
names(x)

S3 method for class 'estimate'
corMat(rho)

S3 replacement method for class 'estimate'
corMat(x) <- value

Arguments

x an estimate object.

rho an estimate object.

value numeric matrix: new correlation matrix. For details cf. estimate.

See Also

estimate, names.estimate, corMat.estimate, corMat

corMat<-

Examples

Read the joint estimate information for the variables "sales", "productprice" and
"costprice" from file:
Get the path to the file with the marginal information:
marginalFilePath=system.file("extdata","profit-4.csv",package="decisionSupport")
Read marginal and correlation file into an estimate:
parameterEstimate<-estimate_read_csv(fileName=marginalFilePath)
print(parameterEstimate)
Print the names of the variables of this estimate
print(row.names(parameterEstimate))
Print the names of the columns of this estimate
print(names(parameterEstimate))
Print the full correlation matrix of this estimate
print(corMat(parameterEstimate))

rtnorm90ci 90%-confidence interval based truncated normal random number gen-
eration.

52 rtnorm90ci

Description

rtnorm90ci generates truncated normal random numbers based on the 90% confidence interval
calculating the distribution parameter numerically from the 90%-confidence interval or via a fit on
the 90%-confidence interval. The fit might include the median or not.

rposnorm90ci generates positive normal random numbers based on the 90% confidence interval.
It is a wrapper function for rtnorm90ci.

rtnorm_0_1_90ci generates normal random numbers truncated to [0, 1] based on the 90% confi-
dence interval. It is a wrapper function for rtnorm90ci.

Usage

rtnorm90ci(n, ci, median = mean(ci), lowerTrunc = -Inf,
upperTrunc = Inf, method = "numeric", relativeTolerance = 0.05,
...)

rposnorm90ci(n, lower, median = mean(c(lower, upper)), upper,
method = "numeric", relativeTolerance = 0.05, ...)

rtnorm_0_1_90ci(n, lower, median = mean(c(lower, upper)), upper,
method = "numeric", relativeTolerance = 0.05, ...)

Arguments

n Number of generated observations.

ci numeric 2-dimensional vector; lower, i.e ci[[1]], and upper bound, i.e ci[[2]],
of the 90%-confidence interval.

median if NULL: truncated normal is fitted only to lower and upper value of the confi-
dence interval; if numeric: truncated normal is fitted on the confidence interval
and the median simultaneously. For details cf. below. This option is only rele-
vant if method="fit".

lowerTrunc numeric; lower truncation point of the distribution (>= -Inf).

upperTrunc numeric; upper truncation point of the distribution (<= Inf).

method method used to determine the parameters of the truncated normal; possible
methods are "numeric" (the default) and "fit".

relativeTolerance

numeric; the relative tolerance level of deviation of the generated confidence in-
terval from the specified interval. If this deviation is greater than relativeTolerance
a warning is given.

... further parameters to be passed to paramtnormci_numeric or paramtnormci_fit,
respectively.

lower numeric; lower bound of the 90% confidence interval.

upper numeric; upper bound of the 90% confidence interval.

sample_CPT 53

Details

method="numeric" is implemented by paramtnormci_numeric and method="fit" by paramtnormci_fit.

Positive normal random number generation: a positive normal distribution is a truncated normal dis-
tribution with lower truncation point equal to zero and upper truncation is infinity. rposnorm90ci
implements this as a wrapper function for
rtnorm90ci(n, c(lower,upper), median, lowerTrunc=0, upperTrunc=Inf, method, relativeTolerance,...).

0-1-(truncated) normal random number generation: a 0-1-normal distribution is a truncated normal
distribution with lower truncation point equal to zero and upper truncation equal to 1. rtnorm_0_1_90ci
implements this as a wrapper function for
rtnorm90ci(n, c(lower,upper), median, lowerTrunc=0, upperTrunc=1, method, relativeTolerance,...).

See Also

For the implementation of method="numeric": paramtnormci_numeric; for the implementation
of method="fit": paramtnormci_fit.

sample_CPT Sample a Conditional Probability Table

Description

This function randomly chooses a state of a categorical variable, based on a Conditional Probabil-
ity Table (CPT; a component of Bayesian Network models) that expresses the probability of each
possible state in relation to the states of other categorical variables. Given information on the state
of all parent variables, the function uses the appropriate probability distribution to draw a random
sample for the state of the variable of interest.

Usage

sample_CPT(CPT, states)

Arguments

CPT list of two data.frames: 1) Conditional Probability Table (CPT); 2) legend ta-
ble specifying which states of the parent nodes belong to which column in the
CPT. This can be generated with the make_CPT function, or specified manually
(which can be cumbersome).

states character vector containing (in the right sequence) state values for all parent
variables.

Value

one of the states of the child node belonging to the CPT.

Author(s)

Eike Luedeling

54 sample_simple_CPT

Examples

test_CPT<-make_CPT(parent_effects=list(c(-1,3),c(-4,2),c(-2,3,4),c(1,2,3)),
parent_weights=c(1,1,1,1),b=2,child_prior=c(1,2,3,4,5),
child_states=c("a","b","c","d","e"),
parent_states=list(c("low","high"),c("A","B"),c(1,2,3),
c("Left","Right","Center")))

sample_CPT(CPT=test_CPT,states=c("low","A","2","Left"))

sample_simple_CPT Make Conditional Probability tables using the likelihood method

Description

This function creates Conditional Probability Tables for Bayesian Network nodes from parameters
that (for complex nodes) can be more easily elicited from experts than the full table. The function
uses the Likelihood method. The function combines the make_CPT and sample_CPT functions, but
only offers limited flexibility. Refer to the make_CPR and sample_CPT descriptions for details.

Usage

sample_simple_CPT(parent_list, child_states_n, child_prior = NULL,
b = 2, obs_states = NULL)

Arguments

parent_list named list of parameters for the parent nodes containing a name and a vector of
two elements: c(number_of_states,parent_weight).

child_states_n number of states for the child node.

child_prior prior distribution for the states of the child node.

b parameter for the strength of the parent’s influence on the child node. A value
of 1 causes no response; 3 is quite strong. Defaults to 2.

obs_states optional vector of observed states for all parents. This has to be complete and
names have to correspond exactly with the names of states of the parent nodes.
It’s also important that the name are given in the exact same sequence as the
parents are listed in parent_list.

Value

list of two data.frames: 1) Conditional Probability Table (CPT); 2) legend table specifying which
states of the parent nodes belong to which column in the CPT. If obs_states are given, an additional
attribute $sampled specified one random draw, according to the CPT and the obs_states provided.

sort.summary.eviSimulation 55

Author(s)

Eike Luedeling

Examples

parent_list<-list(pare1=c(5,3),parent2=c(3,2),PARE3=c(4,5))
sample_simple_CPT(parent_list,5)
sample_simple_CPT(parent_list,5,obs_states=c("very high","medium","high"))

sample_simple_CPT(parent_list=list(management_intensity=c(5,2),inputs=c(5,1)),5,
obs_states=c("medium","very high"))$sampled

sort.summary.eviSimulation

Sort Summarized EVI Simulation Results..

Description

Sort summarized EVI simulation results according to their EVI.

Usage

S3 method for class 'summary.eviSimulation'
sort(x, decreasing = TRUE, ...,
along = row.names(x$summary$evi)[[1]])

Arguments

x An object of class summary.eviSimulation.

decreasing logical: if the EVI should be sorted in decreasing order.

... currently not used

along character: the name of the valuation variable along which the EVI should be
sorted.

Value

An object of class summary.eviSimulation.

See Also

eviSimulation, summary.eviSimulation, sort

56 summary.mcSimulation

summary.eviSimulation Summarize EVI Simulation Results

Description

Produces result summaries of an Expected Value of Information (EVI) simulation obtained by the
function eviSimulation.

Usage

S3 method for class 'eviSimulation'
summary(object, ..., digits = max(3,
getOption("digits") - 3))

Arguments

object An object of class eviSimulation.

... Further arguments passed to summary.welfareDecisionAnalysis.

digits how many significant digits are to be used for numeric and complex x. The de-
fault, NULL, uses getOption("digits"). This is a suggestion: enough decimal
places will be used so that the smallest (in magnitude) number has this many
significant digits, and also to satisfy nsmall. (For the interpretation for complex
numbers see signif.)

Value

An object of class summary.eviSimulation.

See Also

eviSimulation, print.summary.eviSimulation, summary.welfareDecisionAnalysis,
sort.summary.eviSimulation

summary.mcSimulation Summarize results from Monte Carlo simulation.

Description

A summary of the results of a Monte Carlo simulation obtained by the function mcSimulation is
produced.

summary.welfareDecisionAnalysis 57

Usage

S3 method for class 'mcSimulation'
summary(object, ..., digits = max(3,
getOption("digits") - 3), variables.y = names(object$y),
variables.x = if (classicView) names(object$x), classicView = FALSE,
probs = c(0, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 1))

Arguments

object An object of class mcSimulation.

... Further arguments passed to summary.data.frame (classicView=TRUE) or format
(classicView=FALSE).

digits how many significant digits are to be used for numeric and complex x. The de-
fault, NULL, uses getOption("digits"). This is a suggestion: enough decimal
places will be used so that the smallest (in magnitude) number has this many
significant digits, and also to satisfy nsmall. (For the interpretation for complex
numbers see signif.)

variables.y character or character vector: Names of the components of the simulation
function (model_function), whose results shall be displayed. Defaults to all
components.

variables.x character or character vector: Names of the components of the input vari-
ables to the simulation function, i.e. the names of the variables in the input
estimate, whose random sampling results shall be displayed. Defaults to all
components.

classicView logical: if TRUE the results are summarized using summary.data.frame, if
FALSE further output is produced and the quantile information can be chosen.
Cf. section Value and argument probs. Default is FALSE.

probs numeric vector: quantiles that shall be displayed if classicView=FALSE.

Value

An object of class summary.mcSimulation.

See Also

mcSimulation, print.summary.mcSimulation, summary.data.frame

summary.welfareDecisionAnalysis

Summarize Welfare Decision Analysis results.

Description

Produce a summary of the results of a welfare decision analysis obtained by the function
welfareDecisionAnalysis.

58 temp_situations

Usage

S3 method for class 'welfareDecisionAnalysis'
summary(object, ..., digits = max(3,
getOption("digits") - 3), probs = c(0.05, 0.5, 0.95))

Arguments

object An object of class welfareDecisionAnalysis.

... Further arguments passed to format.

digits how many significant digits are to be used for numeric and complex x. The de-
fault, NULL, uses getOption("digits"). This is a suggestion: enough decimal
places will be used so that the smallest (in magnitude) number has this many
significant digits, and also to satisfy nsmall. (For the interpretation for complex
numbers see signif.)

probs numeric vector: quantiles that shall be displayed; if =NULL no quantiles will
be displayed.

Value

An object of class summary.welfareDecisionAnalysis.

See Also

welfareDecisionAnalysis, print.summary.welfareDecisionAnalysis, format

temp_situations Situation occurrence and resolution

Description

This function simulates a situation, e.g. a conflict, that arises with a certain probability, generates
an impact as long as it persists, and has a certain chance of being resolved.

Usage

temp_situations(n, p_occurrence, p_resolution, normal_outcome = 1,
situation_outcome = 0, var_CV_normal = 0, var_CV_situation = 0)

Arguments

n integer; number of values to produce

p_occurrence chance that a situation (e.g. conflict) occurs (probability btw. 0 and 1)

p_resolution chance that the situation disappears (e.g. the conflict gets resolved) (probability
btw. 0 and 1)

normal_outcome output value for vector elements that aren’t affected by the situation (can be
subject to random variation, if var_CV_normal is specified). Defaults to 1.

vv 59

situation_outcome

output value for vector elements that are affected by the situation (can be subject
to random variation, if var_CV_situation is specified). Defaults to 0.

var_CV_normal desired coefficient of variation for ’normal’ vector elements (in percent). De-
faults to 0.

var_CV_situation

desired coefficient of variation for elements of the vector that are affected by the
situation (in percent). Defaults to 0.

Value

vector of n numeric values, representing a variable time series, which simulates the effects of a situa-
tion that arises with a probability p_occurrence and disappears again with a probability p_resolution

Author(s)

Eike Luedeling

Examples

temp_situations(n=30,p_occurrence=0.2,p_resolution=0.5)

temp_situations(n=30,p_occurrence=0.2,p_resolution=0.5,
normal_outcome=10,situation_outcome=100,var_CV_normal=10,
var_CV_situation=40)

vv value varier function

Description

Many variables vary over time and it may not be desirable to ignore this variation in time series
analyses. This function produces time series that contain variation from a specified mean and a
desired coefficient of variation. A trend can be added to this time series

Usage

vv(var_mean, var_CV, n, distribution = "normal", absolute_trend = NA,
relative_trend = NA, lower_limit = NA, upper_limit = NA)

Arguments

var_mean mean of the variable to be varied

var_CV desired coefficient of variation (in percent)

n integer; number of values to produce

60 welfareDecisionAnalysis

distribution probability distribution for the introducing variation. Currently only imple-
mented for "normal"

absolute_trend absolute increment in the var_mean in each time step. Defaults to NA, which
means no such absolute value trend is present. If both absolute and relative
trends are specified, only original means are used

relative_trend relative trend in the var_mean in each time step (in percent). Defaults to NA,
which means no such relative value trend is present. If both absolute and relative
trends are specified, only original means are used

lower_limit lowest possible value for elements of the resulting vector

upper_limit upper possible value for elements of the resulting vector

Details

Note that only one type of trend can be specified. If neither of the trend parameters are NA, the
function uses only the original means

Value

vector of n numeric values, representing a variable time series, which initially has the mean var_mean,
and then increases according to the specified trends. Variation is determined by the given coefficient
of variation var_CV

Author(s)

Eike Luedeling

Examples

valvar<-vv(100,10,30)
plot(valvar)

valvar<-vv(100,10,30,absolute_trend=5)
plot(valvar)

valvar<-vv(100,10,30,relative_trend=5)
plot(valvar)

welfareDecisionAnalysis

Analysis of the underlying welfare based decision problem.

Description

The optimal choice between two different opportunities is calculated. Optimality is taken as maxi-
mizing expected welfare. Furthermore, the Expected Opportunity Loss (EOL) is calculated.

welfareDecisionAnalysis 61

Usage

welfareDecisionAnalysis(estimate, welfare, numberOfModelRuns,
randomMethod = "calculate", functionSyntax = "data.frameNames",
relativeTolerance = 0.05, verbosity = 0)

Arguments

estimate estimate object describing the distribution of the input variables.

welfare either a function or a list with two functions, i.e. list(p1,p2). In the
first case the function is the net benefit (or welfare) of project approval (PA) vs.
the status quo (SQ). In the second case the element p1 is the function valuing
the first project and the element p2 valuing the second project, viz. the welfare
function of p1 and p2 respectively.

numberOfModelRuns

integer: The number of running the welfare model for the underlying Monte
Carlo simulation.

randomMethod character: The method to be used to sample the distribution representing the
input estimate. For details see option method in random.estimate.

functionSyntax character: function syntax used in the welfare function(s). For details see
mcSimulation.

relativeTolerance

numeric: the relative tolerance level of deviation of the generated confidence in-
terval from the specified interval. If this deviation is greater than relativeTolerance
a warning is given.

verbosity integer: if 0 the function is silent; the larger the value the more verbose is
output information.

Details

The underlying decision problem and its notational framework:
We are considering a decision maker who can influence an ecological-economic system having
two alternative decisions d1 and d2 at hand. We assume, that the system can be characterized by
the n−dimensional vector X . The characteristics X , are not necessarily known exactly to the
decision maker. However, we assume furthermore that she is able to quantify this uncertainty
which we call an estimate of the characteristics. Mathematically, an estimate is a random variable
with probability density ρX .
Furthermore, the characteristics X determine the welfare W (d) according to the welfare function
wd:

Wd = wd(X)

Thus, the welfare of decision d is also a random variable whose probability distribution we call
ρWd

. The welfare function wd values the decision d given a certain stateX of the system. In other
words, decision d2 is preferred over decision d1, if and only if, the expected welfare of decision
d2 is greater than the expected welfare (For a comprehensive discussion of the concept of social
preference ordering and its representation by a welfare function cf. Gravelle and Rees (2004)) of
decsion d1, formally

d1 ≺ d2 ⇔ E[Wd1] < E[Wd2].

62 welfareDecisionAnalysis

This means the best decision d∗ is the one which maximizes welfare:

d∗ := arg max
d=d1,d2

E[Wd]

This maximization principle has a dual minimization principle. We define the net benefit NBd1 :=
Wd1 − Wd2 as the difference between the welfare of the two decision alternatives. A loss Ld
is characterized if a decision d produces a negative net benefit. No loss occurs if the decision
produces a positive net benefit. This is reflected in the formal definition

Ld := −NBd, if NBd < 0, and Ld := 0 otherwise.

Using this notion it can be shown that the maximization of expected welfare is equivalent to the
minimization of the expected loss ELd := E[Ld].

The Expected Opportunity Loss (EOL): The use of this concept, here, is in line as described in
Hubbard (2014). The Expected Opportunity Loss (EOL) is defined as the expected loss for the
best decision. The best decision minimizes the expected loss:

EOL := min {ELd1 ,ELd2}

The EOL is always conditional on the available information which is characterized by the prob-
ability distribution of X ρX : EOL = EOL(ρX).
Special case: Status quo and project approval: A very common actual binary decision problem
is the question if a certain project shall be approved versus continuing with business as usual,
i.e. the status quo. It appears to be natural to identify the status quo with zero welfare. This is a
special case (Actually, one can show, that this special case is equivalent to the discussion above.)
of the binary decision problem that we are considering here. The two decision alternatives are
d1 : project approval (PA) and
d2 : status quo (SQ),
and the welfare of the approved project (or project outcome or yield of the project) is the random
variable WPA with distribution PWPA = wPA(PX):

WPA ∼ wPA(PX) = PWPA
and the welfare of the status quo serves as reference and is normalized to zero:

WSQ ≡ 0,

which implies zero expected welfare of the status quo:

E[W]SQ = 0.

Value

An object of class welfareDecisionAnalysis with the following elements:

$mcResult The results of the Monte Carlo analysis of estimate transformed by welfare(cf.
mcSimulation).

$enbPa Expected Net Benefit of project approval: ENB(PA)
$elPa Expected Loss in case of project approval: EL(PA)
$elSq Expected Loss in case of status quo: EL(SQ)
$eol Expected Opportunity Loss: EOL
$optimalChoice The optimal choice, i.e. either project approval (PA) or the status quo (SQ).

welfareDecisionAnalysis 63

References

Hubbard, Douglas W., How to Measure Anything? - Finding the Value of "Intangibles" in Business,
John Wiley & Sons, Hoboken, New Jersey, 2014, 3rd Ed, http://www.howtomeasureanything.
com/.

Gravelle, Hugh and Ray Rees, Microeconomics, Pearson Education Limited, 3rd edition, 2004.

See Also

mcSimulation, estimate, summary.welfareDecisionAnalysis

Examples

###
Example 1 (Creating the estimate from the command line):
###
Create the estimate object:
variable=c("revenue","costs")
distribution=c("posnorm","posnorm")
lower=c(10000, 5000)
upper=c(100000, 50000)
costBenefitEstimate<-as.estimate(variable, distribution, lower, upper)
(a) Define the welfare function without name for the return value:
profit<-function(x){
x$revenue-x$costs

}
Perform the decision analysis:
myAnalysis<-welfareDecisionAnalysis(estimate=costBenefitEstimate,

welfare=profit,
numberOfModelRuns=100000,
functionSyntax="data.frameNames")

Show the analysis results:
print(summary((myAnalysis)))
###
(b) Define the welfare function with a name for the return value:
profit<-function(x){
list(Profit=x$revenue-x$costs)

}
Perform the decision analysis:
myAnalysis<-welfareDecisionAnalysis(estimate=costBenefitEstimate,

welfare=profit,
numberOfModelRuns=100000,
functionSyntax="data.frameNames")

Show the analysis results:
print(summary((myAnalysis)))
###
(c) Two decsion variables:
welfareModel<-function(x){
list(Profit=x$revenue-x$costs,

Costs=-x$costs)
}
Perform the decision analysis:

http://www.howtomeasureanything.com/
http://www.howtomeasureanything.com/

64 welfareDecisionAnalysis

myAnalysis<-welfareDecisionAnalysis(estimate=costBenefitEstimate,
welfare=welfareModel,
numberOfModelRuns=100000,
functionSyntax="data.frameNames")

Show the analysis results:
print(summary((myAnalysis)))

Index

∗Topic Bayesian
make_CPT, 29

∗Topic CPT,
make_CPT, 29

∗Topic Likelihood
make_CPT, 29

∗Topic Network,
make_CPT, 29

∗Topic \textasciitildekwd1
chance_event, 6
discount, 9
gompertz_yield, 22
random_state, 46
sample_CPT, 53
sample_simple_CPT, 54
temp_situations, 58
vv, 59

∗Topic \textasciitildekwd2
chance_event, 6
discount, 9
gompertz_yield, 22
random_state, 46
sample_CPT, 53
sample_simple_CPT, 54
temp_situations, 58
vv, 59

(Modified) PERT, 45, 49
0-1-truncated normal, 45

as.data.frame, 5
as.data.frame.mcSimulation, 5
as.estimate (estimate), 10
as.estimate1d (estimate1d), 13

Beta, 45, 49
biplot.mvr, 38

calculate, 45
Cauchy, 45, 49
Central Chi-Squared, 45, 49

Central F, 45, 49
chance_event, 6
coef.mvr, 38
colors, 24, 26, 27
constrOptim, 34, 35
corMat, 7, 12, 51
corMat.estimate, 51
corMat.estimate (row.names.estimate), 50
corMat<-, 7
corMat<-.estimate (row.names.estimate),

50

data.frame, 5, 11, 12
decisionSupport, 4, 8
decisionSupport-package, 3
discount, 9

estimate, 4, 8, 9, 10, 15–19, 28, 32, 37, 43,
50, 51, 61, 63

estimate1d, 10, 12, 13, 44, 46
estimate_read_csv, 9, 12, 15, 16, 17
estimate_read_csv_old, 9
estimate_read_csv_old

(estimate_read_csv), 15
estimate_write_csv, 12, 16, 17
eviSimulation, 4, 5, 18, 23, 24, 28, 39, 55, 56
Exponential, 45, 49

fit, 45
format, 57, 58

Gamma, 45, 49
getOption, 56–58
Gompertz, 45, 49
gompertz_yield, 22

hist, 24–27
hist.eviSimulation, 23
hist.mcSimulation, 25, 32
hist.welfareDecisionAnalysis, 26

65

66 INDEX

individualEvpiSimulation, 4, 9, 27

Log Normal, 45, 47, 49
Logistic, 45, 49

make.names, 5
make_CPT, 29
mcSimulation, 4, 5, 8, 9, 18, 19, 25, 26, 28,

30, 37–40, 56, 57, 61–63
mvr, 38

names.estimate, 12, 51
names.estimate (row.names.estimate), 50
nleqslv, 36
Non-central Chi-Squared, 45, 49
Normal, 45, 47, 49

paramtnormci_fit, 34, 52, 53
paramtnormci_numeric, 35, 52, 53
plainNames2data.frameNames, 36
plot.mvr, 38
plsr, 38
plsr.mcSimulation, 4, 9, 38
Positive normal, 45
pretty, 24–26
print.data.frame, 39, 40
print.default, 39
print.mcSimulation, 32, 39
print.summary.eviSimulation, 39, 56
print.summary.mcSimulation, 40, 57
print.summary.welfareDecisionAnalysis,

39, 40, 58

random, 41, 43, 46, 50
random.estimate, 4, 8, 11, 12, 18, 28, 31, 32,

43, 61
random.estimate1d, 15, 43, 44
random_state, 46
rdist90ci_exact, 46, 47
rdistq_fit, 41, 42, 46, 48
read.csv, 15, 16
rmvnorm, 50
rmvnorm90ci_exact, 43, 50
row.names, 12
row.names.estimate, 12, 50
rposnorm90ci, 46
rposnorm90ci (rtnorm90ci), 51
rriskFitdist.perc, 49
rtnorm90ci, 51

rtnorm_0_1_90ci, 46
rtnorm_0_1_90ci (rtnorm90ci), 51

sample, 42
sample_CPT, 53
sample_simple_CPT, 54
scan, 15
signif, 56–58
sort, 55
sort.summary.eviSimulation, 55, 56
Student t, 45, 49
summary.data.frame, 57
summary.eviSimulation, 19, 39, 55, 56
summary.mcSimulation, 32, 40, 56
summary.mvr, 38
summary.welfareDecisionAnalysis, 40, 56,

57, 63

temp_situations, 58
this package, 9
tnorm, 35, 36
Triangular, 45, 49
Truncated Normal, 49

Uniform, 45, 47, 49

VIP, 4, 9
vv, 59

Weibull, 45, 49
welfareDecisionAnalysis, 4, 5, 9, 19,

26–28, 40, 57, 58, 60
write.csv, 17

	decisionSupport-package
	as.data.frame.mcSimulation
	chance_event
	corMat
	corMat<-
	decisionSupport
	discount
	estimate
	estimate1d
	estimate_read_csv
	estimate_write_csv
	eviSimulation
	gompertz_yield
	hist.eviSimulation
	hist.mcSimulation
	hist.welfareDecisionAnalysis
	individualEvpiSimulation
	make_CPT
	mcSimulation
	paramtnormci_fit
	paramtnormci_numeric
	plainNames2data.frameNames
	plsr.mcSimulation
	print.mcSimulation
	print.summary.eviSimulation
	print.summary.mcSimulation
	print.summary.welfareDecisionAnalysis
	random
	random.estimate
	random.estimate1d
	random_state
	rdist90ci_exact
	rdistq_fit
	rmvnorm90ci_exact
	row.names.estimate
	rtnorm90ci
	sample_CPT
	sample_simple_CPT
	sort.summary.eviSimulation
	summary.eviSimulation
	summary.mcSimulation
	summary.welfareDecisionAnalysis
	temp_situations
	vv
	welfareDecisionAnalysis
	Index

