rebird: wrapper to the eBird API

Project Status: Active – The project has reached a stable, usable state and is being actively developed. Build Status Build status Coverage Status rstudio mirror downloads cran version

rebird is a package to interface with the eBird webservices.

eBird is a real-time, online bird checklist program. For more information, visit their website: http://www.ebird.org

The API for the eBird webservices can be accessed here: https://documenter.getpostman.com/view/664302/ebird-api-20/2HTbHW

Install

You can install the stable version from CRAN

install.packages("rebird")

Or the development version from Github

install.packages("devtools")
devtools::install_github("ropensci/rebird")

Direct use of rebird

Load the package:

library("rebird")

The eBird API server has been updated and thus there are a couple major changes in the way rebird works. API requests to eBird now require users to provide an API key, which is linked to your eBird user account. You can pass it to the ‘key’ argument in rebird functions, but we highly recommend storing it as an environment variable called EBIRD_KEY in your .Renviron file. If you don’t have a key, you can obtain one from https://ebird.org/api/keygen.

You can keep your .Renviron file in your global R home directory (R.home()), your user’s home directory (Sys.getenv("HOME")), or your current working directory (getwd()). Remember that .Renviron is loaded once when you start R, so if you add your API key to the file you will have to restart your R session. See https://csgillespie.github.io/efficientR/r-startup.html for more information on R’s startup files.

Furthermore, functions now use species codes, rather than scientific names, for species-specific requests. We’ve made the switch easy by providing the species_code function, which converts a scientific name to its species code:

species_code('sula variegata')
#> Peruvian Booby (Sula variegata): perboo1
#> [1] "perboo1"

The species_code function can be called within other rebird functions, or the species code can be specified directly.

Sightings at location determined by latitude/longitude

Search for bird occurrences by latitude and longitude point

ebirdgeo(species = species_code('spinus tristis'), lat = 42, lng = -76)
#> American Goldfinch (Spinus tristis): amegfi
#> # A tibble: 45 x 12
#>    speciesCode comName  sciName  locId locName   obsDt howMany   lat   lng
#>    <chr>       <chr>    <chr>    <chr> <chr>     <chr>   <int> <dbl> <dbl>
#>  1 amegfi      America… Spinus … L447… Binghamt… 2018…       2  42.1 -76.0
#>  2 amegfi      America… Spinus … L207… Workwalk  2018…       1  42.1 -75.9
#>  3 amegfi      America… Spinus … L495… Binghamt… 2018…       1  42.1 -76.0
#>  4 amegfi      America… Spinus … L527… R Tee Go… 2018…       1  42.2 -75.9
#>  5 amegfi      America… Spinus … L795… US-New Y… 2018…       7  42.1 -76.0
#>  6 amegfi      America… Spinus … L978… Murphys … 2018…       5  42.1 -76.0
#>  7 amegfi      America… Spinus … L209… Aquaterr… 2018…       9  42.0 -75.9
#>  8 amegfi      America… Spinus … L320… Hillcres… 2018…       1  42.2 -75.9
#>  9 amegfi      America… Spinus … L285… Camp Sus… 2018…       1  42.0 -75.9
#> 10 amegfi      America… Spinus … L519… IBM Glen… 2018…       3  42.1 -76.0
#> # ... with 35 more rows, and 3 more variables: obsValid <lgl>,
#> #   obsReviewed <lgl>, locationPrivate <lgl>

Recent observations at a region

Search for bird occurrences by region and species name

ebirdregion(loc = 'US', species = 'btbwar')
#> # A tibble: 1,041 x 12
#>    speciesCode comName  sciName  locId  locName  obsDt howMany   lat   lng
#>    <chr>       <chr>    <chr>    <chr>  <chr>    <chr>   <int> <dbl> <dbl>
#>  1 btbwar      Black-t… Setopha… L3572… Cornell… 2018…       2  42.4 -76.5
#>  2 btbwar      Black-t… Setopha… L7962… Pisgah … 2018…       1  36.2 -81.7
#>  3 btbwar      Black-t… Setopha… L2785… Kiwanis… 2018…       1  27.0 -82.1
#>  4 btbwar      Black-t… Setopha… L1109… Enchant… 2018…       3  25.9 -80.2
#>  5 btbwar      Black-t… Setopha… L7814… Wissahi… 2018…       2  40.1 -75.2
#>  6 btbwar      Black-t… Setopha… L5987… Codding… 2018…       2  42.3 -76.4
#>  7 btbwar      Black-t… Setopha… L4023… Home - … 2018…       1  40.2 -75.4
#>  8 btbwar      Black-t… Setopha… L5862… Indrio … 2018…       1  27.5 -80.4
#>  9 btbwar      Black-t… Setopha… L1301… Ashland… 2018…       2  39.8 -75.7
#> 10 btbwar      Black-t… Setopha… L1877… Pinecra… 2018…       1  27.3 -82.5
#> # ... with 1,031 more rows, and 3 more variables: obsValid <lgl>,
#> #   obsReviewed <lgl>, locationPrivate <lgl>

Recent observations at hotspots

Search for bird occurrences by a given hotspot

ebirdregion(loc = 'L99381')
#> # A tibble: 64 x 12
#>    speciesCode comName   sciName   locId locName obsDt howMany   lat   lng
#>    <chr>       <chr>     <chr>     <chr> <chr>   <chr>   <int> <dbl> <dbl>
#>  1 wooduc      Wood Duck Aix spon… L993… Stewar… 2018…       4  42.5 -76.5
#>  2 mallar3     Mallard   Anas pla… L993… Stewar… 2018…      16  42.5 -76.5
#>  3 ambduc      American… Anas rub… L993… Stewar… 2018…       1  42.5 -76.5
#>  4 rocpig      Rock Pig… Columba … L993… Stewar… 2018…       4  42.5 -76.5
#>  5 ribgul      Ring-bil… Larus de… L993… Stewar… 2018…     110  42.5 -76.5
#>  6 hergul      Herring … Larus ar… L993… Stewar… 2018…       1  42.5 -76.5
#>  7 lbbgul      Lesser B… Larus fu… L993… Stewar… 2018…       1  42.5 -76.5
#>  8 gbbgul      Great Bl… Larus ma… L993… Stewar… 2018…       5  42.5 -76.5
#>  9 doccor      Double-c… Phalacro… L993… Stewar… 2018…     118  42.5 -76.5
#> 10 grnher      Green He… Butoride… L993… Stewar… 2018…       1  42.5 -76.5
#> # ... with 54 more rows, and 3 more variables: obsValid <lgl>,
#> #   obsReviewed <lgl>, locationPrivate <lgl>

Nearest observations of a species

Search for a species’ occurrences near a given latitude and longitude

nearestobs(species_code('branta canadensis'), 42, -76)
#> Canada Goose (Branta canadensis): cangoo
#> # A tibble: 27 x 12
#>    speciesCode comName  sciName  locId locName   obsDt howMany   lat   lng
#>    <chr>       <chr>    <chr>    <chr> <chr>     <chr>   <int> <dbl> <dbl>
#>  1 cangoo      Canada … Branta … L186… Cheri A.… 2018…       4  42.1 -75.9
#>  2 cangoo      Canada … Branta … L207… Workwalk  2018…      26  42.1 -75.9
#>  3 cangoo      Canada … Branta … L287… Vestal R… 2018…      49  42.1 -76.0
#>  4 cangoo      Canada … Branta … L527… R Tee Go… 2018…      53  42.2 -75.9
#>  5 cangoo      Canada … Branta … L728… State Ga… 2018…      23  41.9 -75.7
#>  6 cangoo      Canada … Branta … L504… Rt. 12A … 2018…      65  42.2 -75.9
#>  7 cangoo      Canada … Branta … L468… "Boland … 2018…      12  42.2 -75.9
#>  8 cangoo      Canada … Branta … L285… Camp Sus… 2018…       2  42.0 -75.9
#>  9 cangoo      Canada … Branta … L447… Binghamt… 2018…       2  42.1 -76.0
#> 10 cangoo      Canada … Branta … L501… William … 2018…      50  42.1 -76.0
#> # ... with 17 more rows, and 3 more variables: obsValid <lgl>,
#> #   obsReviewed <lgl>, locationPrivate <lgl>

Frequency of observations at hotspots or regions

Obtain historical frequencies of bird occurrences by hotspot or region

ebirdfreq(loctype = 'hotspots', loc = 'L196159')
#> # A tibble: 9,072 x 4
#>    comName                     monthQt   frequency sampleSize
#>    <chr>                       <chr>         <dbl>      <dbl>
#>  1 Snow Goose                  January-1     0.           27.
#>  2 Greater White-fronted Goose January-1     0.           27.
#>  3 Cackling Goose              January-1     0.           27.
#>  4 Canada Goose                January-1     0.           27.
#>  5 Cackling/Canada Goose       January-1     0.           27.
#>  6 Trumpeter Swan              January-1     0.           27.
#>  7 Wood Duck                   January-1     0.185        27.
#>  8 Blue-winged Teal            January-1     0.           27.
#>  9 Cinnamon Teal               January-1     0.           27.
#> 10 Blue-winged/Cinnamon Teal   January-1     0.           27.
#> # ... with 9,062 more rows

Recent notable sightings

Search for notable sightings at a given latitude and longitude

ebirdnotable(lat = 42, lng = -70)
#> # A tibble: 802 x 12
#>    speciesCode comName  sciName  locId locName   obsDt howMany   lat   lng
#>    <chr>       <chr>    <chr>    <chr> <chr>     <chr>   <int> <dbl> <dbl>
#>  1 rthhum      Ruby-th… Archilo… L584… US-New H… 2018…       1  42.9 -71.0
#>  2 ameoys      America… Haemato… L765… Basket I… 2018…       2  43.5 -70.4
#>  3 rthhum      Ruby-th… Archilo… L497… stakeout… 2018…       1  42.3 -71.6
#>  4 ycnher      Yellow-… Nyctana… L382… Lake War… 2018…       1  42.4 -72.6
#>  5 ovenbi1     Ovenbird Seiurus… L168… Brenton … 2018…       1  41.5 -71.4
#>  6 hoowar      Hooded … Setopha… L514… 000  31 … 2018…       1  43.3 -71.0
#>  7 ycnher      Yellow-… Nyctana… L796… Mt. Warn… 2018…       1  42.4 -72.6
#>  8 ycnher      Yellow-… Nyctana… L796… Lake War… 2018…       1  42.4 -72.6
#>  9 ycnher      Yellow-… Nyctana… L796… Lake War… 2018…       1  42.4 -72.6
#> 10 sora        Sora     Porzana… L420… Tiogue L… 2018…       1  41.7 -71.6
#> # ... with 792 more rows, and 3 more variables: obsValid <lgl>,
#> #   obsReviewed <lgl>, locationPrivate <lgl>

or a region

ebirdnotable(locID = 'US-NY-109')
#> # A tibble: 71 x 12
#>    speciesCode comName   sciName  locId locName  obsDt howMany   lat   lng
#>    <chr>       <chr>     <chr>    <chr> <chr>    <chr>   <int> <dbl> <dbl>
#>  1 buggna      Blue-gra… Poliopt… L177… Sapsuck… 2018…       1  42.5 -76.4
#>  2 comgal1     Common G… Gallinu… L518… Hile Sc… 2018…       1  42.5 -76.4
#>  3 buggna1     Blue-gra… Poliopt… L124… Sapsuck… 2018…       1  42.5 -76.5
#>  4 buggna      Blue-gra… Poliopt… L515… Sapsuck… 2018…       1  42.5 -76.5
#>  5 comnig      Common N… Chordei… L518… Hile Sc… 2018…       1  42.5 -76.4
#>  6 blkvul      Black Vu… Coragyp… L398… 14## Ha… 2018…       1  42.5 -76.5
#>  7 blkvul      Black Vu… Coragyp… L286… Sapsuck… 2018…       1  42.5 -76.5
#>  8 blkvul      Black Vu… Coragyp… L212… Stevens… 2018…       1  42.4 -76.4
#>  9 sora        Sora      Porzana… L594… Ridgewa… 2018…       1  42.3 -76.4
#> 10 conwar      Connecti… Opororn… L446… Durland… 2018…       1  42.4 -76.4
#> # ... with 61 more rows, and 3 more variables: obsValid <lgl>,
#> #   obsReviewed <lgl>, locationPrivate <lgl>

Information on a given region

Obtain detailed information on any valid eBird region

ebirdregioninfo("CA-BC-GV")
#> # A tibble: 1 x 5
#>   region                                     minX  maxX  minY  maxY
#>   <chr>                                     <dbl> <dbl> <dbl> <dbl>
#> 1 Metro Vancouver, British Columbia, Canada -123. -122.  49.0  49.6

rebird and other packages

How to use rebird

This package is part of a richer suite called spocc - Species Occurrence Data, along with several other packages, that provide access to occurrence records from multiple databases. We recommend using spocc as the primary R interface to rebird unless your needs are limited to this single source.

auk vs. rebird

Those interested in eBird data may also want to consider auk, an R package that helps extracting and processing the whole eBird dataset. The functions in rebird are faster but mostly limited to accessing recent (i.e. within the last 30 days) observations, although ebirdfreq() does provide historical frequency of observation data. In contrast, auk gives access to the full set of ~ 500 million eBird observations. For most ecological applications, users will require auk; however, for some use cases, e.g. building tools for birders, rebird provides a quicker and easier way to access data. rebird and auk are both part of the rOpenSci project.

API requests covered by rebird

The 2.0 APIs have considerably been expanded from the previous version, and rebird only covers some of them. The webservices covered are listed below; if you’d like to contribute wrappers to APIs not yet covered by this package, feel free to submit a pull request!

data/obs

product

ref/geo

ref/hotspot

ref/taxonomy

ref/region

Meta

ropensci_footer