tidypredict: Run Predictions Inside the Database

It parses a fitted 'R' model object, and returns a formula in 'Tidy Eval' code that calculates the predictions. It works with several databases back-ends because it leverages 'dplyr' and 'dbplyr' for the final 'SQL' translation of the algorithm. It currently supports lm(), glm(), randomForest(), ranger() and earth() models.

Version: 0.3.0
Depends: R (≥ 3.1)
Imports: dplyr (≥ 0.7), rlang, purrr, knitr
Suggests: dbplyr, testthat, randomForest, ranger, earth, rmarkdown, nycflights13, RSQLite, methods, DBI, covr
Published: 2019-01-10
Author: Edgar Ruiz [aut, cre]
Maintainer: Edgar Ruiz <edgar at rstudio.com>
BugReports: https://github.com/edgararuiz/tidypredict/issues
License: GPL-3
URL: http://tidypredict.netlify.com/
NeedsCompilation: no
Materials: README NEWS
In views: ModelDeployment
CRAN checks: tidypredict results


Reference manual: tidypredict.pdf
Package source: tidypredict_0.3.0.tar.gz
Windows binaries: r-devel: tidypredict_0.3.0.zip, r-release: tidypredict_0.3.0.zip, r-oldrel: tidypredict_0.3.0.zip
OS X binaries: r-release: tidypredict_0.3.0.tgz, r-oldrel: tidypredict_0.3.0.tgz
Old sources: tidypredict archive

Reverse dependencies:

Reverse imports: tidymodels


Please use the canonical form https://CRAN.R-project.org/package=tidypredict to link to this page.