CRAN Package Check Results for Package virtualspecies

Last updated on 2019-04-13 01:58:26 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.4-4 9.07 80.50 89.57 ERROR
r-devel-linux-x86_64-debian-gcc 1.4-4 9.12 62.82 71.94 ERROR
r-devel-linux-x86_64-fedora-clang 1.4-4 105.69 ERROR
r-devel-linux-x86_64-fedora-gcc 1.4-4 101.79 ERROR
r-devel-windows-ix86+x86_64 1.4-4 22.00 110.00 132.00 ERROR
r-patched-linux-x86_64 1.4-4 10.32 80.39 90.71 ERROR
r-patched-solaris-x86 1.4-4 152.60 ERROR
r-release-linux-x86_64 1.4-4 6.02 89.88 95.90 OK
r-release-windows-ix86+x86_64 1.4-4 15.00 90.00 105.00 OK
r-release-osx-x86_64 1.4-4 OK
r-oldrel-windows-ix86+x86_64 1.4-4 8.00 99.00 107.00 OK
r-oldrel-osx-x86_64 1.4-4 OK

Check Details

Version: 1.4-4
Check: examples
Result: ERROR
    Running examples in 'virtualspecies-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: generateRandomSp
    > ### Title: Generate a random virtual species distribution from
    > ### environmental variables
    > ### Aliases: generateRandomSp
    >
    > ### ** Examples
    >
    > # Create an example stack with six environmental variables
    > a <- matrix(rep(dnorm(1:100, 50, sd = 25)),
    + nrow = 100, ncol = 100, byrow = TRUE)
    > env <- stack(raster(a * dnorm(1:100, 50, sd = 25)),
    + raster(a * 1:100),
    + raster(a * logisticFun(1:100, alpha = 10, beta = 70)),
    + raster(t(a)),
    + raster(exp(a)),
    + raster(log(a)))
    > names(env) <- paste("Var", 1:6, sep = "")
    >
    > # More than 6 variables: by default a PCA approach will be used
    > generateRandomSp(env)
     - Perfoming the pca
    
     - Defining the response of the species along PCA axes
    
     - Calculating suitability values
    
     - Converting into Presence - Absence
    
     --- Determing species.prevalence automatically according to alpha and beta
    
    
    Virtual species generated from 6 variables:
     Var1, Var2, Var3, Var4, Var5, Var6
    
    - Approach used: Response to axes of a PCA
    - Axes: 1, 2 ; 81.71 % explained by these axes
    - Responses to axes:
     .Axis 1 [min=-3.52; max=3.55] : dnorm (mean=1.399218; sd=2.969177)
     .Axis 2 [min=-1.74; max=3.75] : dnorm (mean=0.2190712; sd=1.881691)
    - Environmental suitability was rescaled between 0 and 1
    
    - Converted into presence-absence:
     .Method = probability
     .alpha (slope) = -0.1
     .beta (inflexion point) = 0.128128128128128
     .species prevalence = 0.914>
    > # Manually choosing a response approach
    > generateRandomSp(env, approach = "response")
     - Determining species' response to predictor variables
    
    Error in seq.default(cur.rast@data@min, cur.rast@data@max, length = 1000) :
     'from' must be a finite number
    Calls: generateRandomSp -> sample -> seq -> seq.default
    Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-patched-linux-x86_64

Version: 1.4-4
Check: examples
Result: ERROR
    Running examples in ‘virtualspecies-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: generateRandomSp
    > ### Title: Generate a random virtual species distribution from
    > ### environmental variables
    > ### Aliases: generateRandomSp
    >
    > ### ** Examples
    >
    > # Create an example stack with six environmental variables
    > a <- matrix(rep(dnorm(1:100, 50, sd = 25)),
    + nrow = 100, ncol = 100, byrow = TRUE)
    > env <- stack(raster(a * dnorm(1:100, 50, sd = 25)),
    + raster(a * 1:100),
    + raster(a * logisticFun(1:100, alpha = 10, beta = 70)),
    + raster(t(a)),
    + raster(exp(a)),
    + raster(log(a)))
    > names(env) <- paste("Var", 1:6, sep = "")
    >
    > # More than 6 variables: by default a PCA approach will be used
    > generateRandomSp(env)
     - Perfoming the pca
    
     - Defining the response of the species along PCA axes
    
     - Calculating suitability values
    
     - Converting into Presence - Absence
    
     --- Determing species.prevalence automatically according to alpha and beta
    
    
    Virtual species generated from 6 variables:
     Var1, Var2, Var3, Var4, Var5, Var6
    
    - Approach used: Response to axes of a PCA
    - Axes: 1, 2 ; 81.71 % explained by these axes
    - Responses to axes:
     .Axis 1 [min=-3.52; max=3.55] : dnorm (mean=1.399218; sd=2.969177)
     .Axis 2 [min=-1.74; max=3.75] : dnorm (mean=0.2190712; sd=1.881691)
    - Environmental suitability was rescaled between 0 and 1
    
    - Converted into presence-absence:
     .Method = probability
     .alpha (slope) = -0.1
     .beta (inflexion point) = 0.128128128128128
     .species prevalence = 0.914>
    > # Manually choosing a response approach
    > generateRandomSp(env, approach = "response")
     - Determining species' response to predictor variables
    
    Error in seq.default(cur.rast@data@min, cur.rast@data@max, length = 1000) :
     'from' must be a finite number
    Calls: generateRandomSp -> sample -> seq -> seq.default
    Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-patched-solaris-x86