Last updated on 2019-04-13 01:58:26 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.4-4 | 9.07 | 80.50 | 89.57 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 1.4-4 | 9.12 | 62.82 | 71.94 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 1.4-4 | 105.69 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 1.4-4 | 101.79 | ERROR | |||
r-devel-windows-ix86+x86_64 | 1.4-4 | 22.00 | 110.00 | 132.00 | ERROR | |
r-patched-linux-x86_64 | 1.4-4 | 10.32 | 80.39 | 90.71 | ERROR | |
r-patched-solaris-x86 | 1.4-4 | 152.60 | ERROR | |||
r-release-linux-x86_64 | 1.4-4 | 6.02 | 89.88 | 95.90 | OK | |
r-release-windows-ix86+x86_64 | 1.4-4 | 15.00 | 90.00 | 105.00 | OK | |
r-release-osx-x86_64 | 1.4-4 | OK | ||||
r-oldrel-windows-ix86+x86_64 | 1.4-4 | 8.00 | 99.00 | 107.00 | OK | |
r-oldrel-osx-x86_64 | 1.4-4 | OK |
Version: 1.4-4
Check: examples
Result: ERROR
Running examples in 'virtualspecies-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: generateRandomSp
> ### Title: Generate a random virtual species distribution from
> ### environmental variables
> ### Aliases: generateRandomSp
>
> ### ** Examples
>
> # Create an example stack with six environmental variables
> a <- matrix(rep(dnorm(1:100, 50, sd = 25)),
+ nrow = 100, ncol = 100, byrow = TRUE)
> env <- stack(raster(a * dnorm(1:100, 50, sd = 25)),
+ raster(a * 1:100),
+ raster(a * logisticFun(1:100, alpha = 10, beta = 70)),
+ raster(t(a)),
+ raster(exp(a)),
+ raster(log(a)))
> names(env) <- paste("Var", 1:6, sep = "")
>
> # More than 6 variables: by default a PCA approach will be used
> generateRandomSp(env)
- Perfoming the pca
- Defining the response of the species along PCA axes
- Calculating suitability values
- Converting into Presence - Absence
--- Determing species.prevalence automatically according to alpha and beta
Virtual species generated from 6 variables:
Var1, Var2, Var3, Var4, Var5, Var6
- Approach used: Response to axes of a PCA
- Axes: 1, 2 ; 81.71 % explained by these axes
- Responses to axes:
.Axis 1 [min=-3.52; max=3.55] : dnorm (mean=1.399218; sd=2.969177)
.Axis 2 [min=-1.74; max=3.75] : dnorm (mean=0.2190712; sd=1.881691)
- Environmental suitability was rescaled between 0 and 1
- Converted into presence-absence:
.Method = probability
.alpha (slope) = -0.1
.beta (inflexion point) = 0.128128128128128
.species prevalence = 0.914>
> # Manually choosing a response approach
> generateRandomSp(env, approach = "response")
- Determining species' response to predictor variables
Error in seq.default(cur.rast@data@min, cur.rast@data@max, length = 1000) :
'from' must be a finite number
Calls: generateRandomSp -> sample -> seq -> seq.default
Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-patched-linux-x86_64
Version: 1.4-4
Check: examples
Result: ERROR
Running examples in ‘virtualspecies-Ex.R’ failed
The error most likely occurred in:
> ### Name: generateRandomSp
> ### Title: Generate a random virtual species distribution from
> ### environmental variables
> ### Aliases: generateRandomSp
>
> ### ** Examples
>
> # Create an example stack with six environmental variables
> a <- matrix(rep(dnorm(1:100, 50, sd = 25)),
+ nrow = 100, ncol = 100, byrow = TRUE)
> env <- stack(raster(a * dnorm(1:100, 50, sd = 25)),
+ raster(a * 1:100),
+ raster(a * logisticFun(1:100, alpha = 10, beta = 70)),
+ raster(t(a)),
+ raster(exp(a)),
+ raster(log(a)))
> names(env) <- paste("Var", 1:6, sep = "")
>
> # More than 6 variables: by default a PCA approach will be used
> generateRandomSp(env)
- Perfoming the pca
- Defining the response of the species along PCA axes
- Calculating suitability values
- Converting into Presence - Absence
--- Determing species.prevalence automatically according to alpha and beta
Virtual species generated from 6 variables:
Var1, Var2, Var3, Var4, Var5, Var6
- Approach used: Response to axes of a PCA
- Axes: 1, 2 ; 81.71 % explained by these axes
- Responses to axes:
.Axis 1 [min=-3.52; max=3.55] : dnorm (mean=1.399218; sd=2.969177)
.Axis 2 [min=-1.74; max=3.75] : dnorm (mean=0.2190712; sd=1.881691)
- Environmental suitability was rescaled between 0 and 1
- Converted into presence-absence:
.Method = probability
.alpha (slope) = -0.1
.beta (inflexion point) = 0.128128128128128
.species prevalence = 0.914>
> # Manually choosing a response approach
> generateRandomSp(env, approach = "response")
- Determining species' response to predictor variables
Error in seq.default(cur.rast@data@min, cur.rast@data@max, length = 1000) :
'from' must be a finite number
Calls: generateRandomSp -> sample -> seq -> seq.default
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-patched-solaris-x86