We use a non-linear model, termed ACME, that reflects a parsimonious biological model for allelic contributions of cis-acting eQTLs. With non-linear least-squares algorithm we estimate maximum likelihood parameters. The ACME model provides interpretable effect size estimates and p-values with well controlled Type-I error. Includes both R and (much faster) C implementations. For more details see Palowitch et al. (2017) <doi:10.1111/biom.12810>.
Version: | 1.6 |
Depends: | R (≥ 3.3.0), filematrix |
Imports: | parallel |
Suggests: | knitr, rmarkdown, pander |
Published: | 2018-03-06 |
Author: | Andrey A Shabalin |
Maintainer: | Andrey A Shabalin <andrey.shabalin at gmail.com> |
BugReports: | https://github.com/andreyshabalin/ACMEeqtl/issues |
License: | LGPL-3 |
URL: | https://github.com/andreyshabalin/ACMEeqtl |
NeedsCompilation: | yes |
Citation: | ACMEeqtl citation info |
CRAN checks: | ACMEeqtl results |
Reference manual: | ACMEeqtl.pdf |
Vignettes: |
ACMEeqtl Overview Vignette |
Package source: | ACMEeqtl_1.6.tar.gz |
Windows binaries: | r-devel: ACMEeqtl_1.6.zip, r-release: ACMEeqtl_1.6.zip, r-oldrel: ACMEeqtl_1.6.zip |
OS X binaries: | r-release: ACMEeqtl_1.6.tgz, r-oldrel: ACMEeqtl_1.6.tgz |
Old sources: | ACMEeqtl archive |
Please use the canonical form https://CRAN.R-project.org/package=ACMEeqtl to link to this page.