snssde1d()
Assume that we want to describe the following SDE:
Itô form3:
\[\begin{equation}\label{eq:05} dX_{t} = \frac{1}{2}\theta^{2} X_{t} dt + \theta X_{t} dW_{t},\qquad X_{0}=x_{0} > 0 \end{equation}\] Stratonovich form: \[\begin{equation}\label{eq:06} dX_{t} = \frac{1}{2}\theta^{2} X_{t} dt +\theta X_{t} \circ dW_{t},\qquad X_{0}=x_{0} > 0 \end{equation}\]In the above \(f(t,x)=\frac{1}{2}\theta^{2} x\) and \(g(t,x)= \theta x\) (\(\theta > 0\)), \(W_{t}\) is a standard Wiener process. To simulate this models using snssde1d()
function we need to specify:
drift
and diffusion
coefficients as R expressions that depend on the state variable x
and time variable t
.N=1000
(by default: N=1000
).M=1000
(by default: M=1
).t0=0
, x0=10
and end time T=1
(by default: t0=0
, x0=0
and T=1
).Dt=0.001
(by default: Dt=(T-t0)/N
).type="ito"
for Ito or type="str"
for Stratonovich (by default type="ito"
).method
(by default method="euler"
).R> theta = 0.5
R> f <- expression( (0.5*theta^2*x) )
R> g <- expression( theta*x )
R> mod1 <- snssde1d(drift=f,diffusion=g,x0=10,M=1000,type="ito") # Using Itô
R> mod2 <- snssde1d(drift=f,diffusion=g,x0=10,M=1000,type="str") # Using Stratonovich
R> mod1
Itô Sde 1D:
| dX(t) = (0.5 * theta^2 * X(t)) * dt + theta * X(t) * dW(t)
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 1001.
| Number of simulation | M = 1000.
| Initial value | x0 = 10.
| Time of process | t in [0,1].
| Discretization | Dt = 0.001.
R> mod2
Stratonovich Sde 1D:
| dX(t) = (0.5 * theta^2 * X(t)) * dt + theta * X(t) o dW(t)
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 1001.
| Number of simulation | M = 1000.
| Initial value | x0 = 10.
| Time of process | t in [0,1].
| Discretization | Dt = 0.001.
Using Monte-Carlo simulations, the following statistical measures (S3 method
) for class snssde1d()
can be approximated for the \(X_{t}\) process at any time \(t\):
mean
.moment
with order=2
and center=TRUE
.Median
.Mode
.quantile
.min
and max
.skewness
and kurtosis
.cv
.moment
.bconfint
.summary
.The following statistical measures (S3 method
) for class snssde1d()
can be approximated for the \(X_{t}\) process at any time \(t\), for example at=1
:
R> s = 1
R> mean(mod1, at = s)
[1] 11.309
R> moment(mod1, at = s , center = TRUE , order = 2) ## variance
[1] 36.973
R> Median(mod1, at = s)
[1] 9.9856
R> Mode(mod1, at =s)
[1] 9.0918
R> quantile(mod1 , at = s)
0% 25% 50% 75% 100%
1.8793 7.1417 9.9856 13.9511 51.1379
R> kurtosis(mod1 , at = s)
[1] 7.4572
R> skewness(mod1 , at = s)
[1] 1.6261
R> cv(mod1 , at = s )
[1] 0.53796
R> min(mod1 , at = s)
[1] 1.8793
R> max(mod1 , at = s)
[1] 51.138
R> moment(mod1, at = s , center= TRUE , order = 4)
[1] 10215
R> moment(mod1, at = s , center= FALSE , order = 4)
[1] 71501
The summary of the results of mod1
and mod2
at time \(t=1\) of class snssde1d()
is given by:
R> summary(mod1, at = 1)
Monte-Carlo Statistics for X(t) at time t = 1
Mean 11.30864
Variance 37.01033
Median 9.98564
Mode 9.09179
First quartile 7.14169
Third quartile 13.95111
Minimum 1.87935
Maximum 51.13790
Skewness 1.62614
Kurtosis 7.45721
Coef-variation 0.53796
3th-order moment 366.13591
4th-order moment 10214.62053
5th-order moment 261731.91301
6th-order moment 8119638.43329
R> summary(mod2, at = 1)
Monte-Carlo Statistics for X(t) at time t = 1
Mean 10.12993
Variance 30.58754
Median 8.78553
Mode 6.63369
First quartile 6.21806
Third quartile 12.65557
Minimum 2.07253
Maximum 51.83341
Skewness 1.68558
Kurtosis 8.30989
Coef-variation 0.54597
3th-order moment 285.14567
4th-order moment 7774.71311
5th-order moment 217522.03698
6th-order moment 7490738.91929
Hence we can just make use of the rsde1d()
function to build our random number generator for the conditional density of the \(X_{t}|X_{0}\) (\(X_{t}^{\text{mod1}}| X_{0}\) and \(X_{t}^{\text{mod2}}|X_{0}\)) at time \(t = 1\).
R> x1 <- rsde1d(object = mod1, at = 1) # X(t=1) | X(0)=x0 (Itô SDE)
R> x2 <- rsde1d(object = mod2, at = 1) # X(t=1) | X(0)=x0 (Stratonovich SDE)
R> head(x1,n=10)
[1] 7.1408 12.7503 24.7303 12.5644 13.0793 6.4470 8.7430 6.1797
[9] 11.7056 10.1324
R> head(x2,n=10)
[1] 18.2654 7.2851 3.8816 6.8366 17.5960 8.4661 5.1722 11.7376
[9] 17.8945 7.5208
R> summary(data.frame(x1,x2))
x1 x2
Min. : 1.88 Min. : 2.07
1st Qu.: 7.14 1st Qu.: 6.22
Median : 9.99 Median : 8.79
Mean :11.31 Mean :10.13
3rd Qu.:13.95 3rd Qu.:12.66
Max. :51.14 Max. :51.83
The function dsde1d()
can be used to show the Approximate transitional density for \(X_{t}|X_{0}\) at time \(t-s=1\) with log-normal curves:
R> mu1 = log(10); sigma1= sqrt(theta^2) # log mean and log variance for mod1
R> mu2 = log(10)-0.5*theta^2 ; sigma2 = sqrt(theta^2) # log mean and log variance for mod2
R> AppdensI <- dsde1d(mod1, at = 1)
R> AppdensS <- dsde1d(mod2, at = 1)
R> plot(AppdensI , dens = function(x) dlnorm(x,meanlog=mu1,sdlog = sigma1))
R> plot(AppdensS , dens = function(x) dlnorm(x,meanlog=mu2,sdlog = sigma2))
In Figure 2, we present the flow of trajectories, the mean path (red lines) of solution of and , with their empirical \(95\%\) confidence bands, that is to say from the \(2.5th\) to the \(97.5th\) percentile for each observation at time \(t\) (blue lines):
R> ## Itô
R> plot(mod1,ylab=expression(X^mod1))
R> lines(time(mod1),apply(mod1$X,1,mean),col=2,lwd=2)
R> lines(time(mod1),apply(mod1$X,1,bconfint,level=0.95)[1,],col=4,lwd=2)
R> lines(time(mod1),apply(mod1$X,1,bconfint,level=0.95)[2,],col=4,lwd=2)
R> legend("topleft",c("mean path",paste("bound of", 95,"% confidence")),inset = .01,col=c(2,4),lwd=2,cex=0.8)
R> ## Stratonovich
R> plot(mod2,ylab=expression(X^mod2))
R> lines(time(mod2),apply(mod2$X,1,mean),col=2,lwd=2)
R> lines(time(mod2),apply(mod2$X,1,bconfint,level=0.95)[1,],col=4,lwd=2)
R> lines(time(mod2),apply(mod2$X,1,bconfint,level=0.95)[2,],col=4,lwd=2)
R> legend("topleft",c("mean path",paste("bound of",95,"% confidence")),col=c(2,4),inset =.01,lwd=2,cex=0.8)
mod1: Itô and mod2: Stratonovich
snssde2d()
The following \(2\)-dimensional SDE’s with a vector of drift and a diagonal matrix of diffusion coefficients:
Itô form: \[\begin{equation}\label{eq:09} \begin{cases} dX_t = f_{x}(t,X_{t},Y_{t}) dt + g_{x}(t,X_{t},Y_{t}) dW_{1,t}\\ dY_t = f_{y}(t,X_{t},Y_{t}) dt + g_{y}(t,X_{t},Y_{t}) dW_{2,t} \end{cases} \end{equation}\] Stratonovich form: \[\begin{equation}\label{eq:10} \begin{cases} dX_t = f_{x}(t,X_{t},Y_{t}) dt + g_{x}(t,X_{t},Y_{t}) \circ dW_{1,t}\\ dY_t = f_{y}(t,X_{t},Y_{t}) dt + g_{y}(t,X_{t},Y_{t}) \circ dW_{2,t} \end{cases} \end{equation}\]\(W_{1,t}\) and \(W_{2,t}\) is a two independent standard Wiener process. To simulate \(2d\) models using snssde2d()
function we need to specify:
drift
(2d) and diffusion
(2d) coefficients as R expressions that depend on the state variable x
, y
and time variable t
.N
(default: N=1000
).M
(default: M=1
).t0
, x0
and end time T
(default: t0=0
, x0=c(0,0)
and T=1
).Dt
(default: Dt=(T-t0)/N
).type="ito"
for Ito or type="str"
for Stratonovich (default type="ito"
).method
(default method="euler"
).We simulate a flow of \(1000\) trajectories of \((X_{t},Y_{t})\), with integration step size \(\Delta t = 0.01\), and using second Milstein method.
R> x0=5;y0=0
R> mu=3;sigma=0.5
R> fx <- expression(-(x/mu),x)
R> gx <- expression(sqrt(sigma),0)
R> mod2d <- snssde2d(drift=fx,diffusion=gx,Dt=0.01,M=1000,x0=c(x0,y0),method="smilstein")
R> mod2d
Itô Sde 2D:
| dX(t) = -(X(t)/mu) * dt + sqrt(sigma) * dW1(t)
| dY(t) = X(t) * dt + 0 * dW2(t)
Method:
| Second-order Milstein scheme
Summary:
| Size of process | N = 1001.
| Number of simulation | M = 1000.
| Initial values | (x0,y0) = (5,0).
| Time of process | t in [0,10].
| Discretization | Dt = 0.01.
The following statistical measures (S3 method
) for class snssde2d()
can be approximated for the \((X_{t},Y_{t})\) process at any time \(t\), for example at=5
:
R> s = 5
R> mean(mod2d, at = s)
[1] 0.98131 12.24217
R> moment(mod2d, at = s , center = TRUE , order = 2) ## variance
[1] 0.74467 7.06026
R> Median(mod2d, at = s)
[1] 1.0062 12.2806
R> Mode(mod2d, at = s)
[1] 1.2937 12.0354
R> quantile(mod2d , at = s)
$x
0% 25% 50% 75% 100%
-1.72370 0.38862 1.00617 1.59448 3.68060
$y
0% 25% 50% 75% 100%
1.6918 10.3693 12.2806 14.1281 21.6861
R> kurtosis(mod2d , at = s)
[1] 2.8482 2.9520
R> skewness(mod2d , at = s)
[1] -0.11694 -0.12734
R> cv(mod2d , at = s )
[1] 0.87982 0.21715
R> min(mod2d , at = s)
[1] -1.7237 1.6918
R> max(mod2d , at = s)
[1] 3.6806 21.6861
R> moment(mod2d, at = s , center= TRUE , order = 4)
[1] 1.5826 147.4459
R> moment(mod2d, at = s , center= FALSE , order = 4)
[1] 6.5171 28840.3253
The summary of the results of mod2d
at time \(t=5\) of class snssde2d()
is given by:
R> summary(mod2d, at = s)
Monte-Carlo Statistics for (X(t),Y(t)) at time t = 5
X Y
Mean 0.98131 12.24217
Variance 0.74542 7.06733
Median 1.00617 12.28057
Mode 1.29371 12.03535
First quartile 0.38862 10.36932
Third quartile 1.59448 14.12811
Minimum -1.72370 1.69180
Maximum 3.68060 21.68613
Skewness -0.11694 -0.12734
Kurtosis 2.84818 2.95204
Coef-variation 0.87982 0.21715
3th-order moment -0.07526 -2.39241
4th-order moment 1.58259 147.44592
5th-order moment -0.35759 -166.53893
6th-order moment 5.40569 5739.27245
For plotting (back in time) using the command plot
, the results of the simulation are shown in Figure 3.
R> plot(mod2d)
Ornstein-Uhlenbeck process and its integral
Take note of the well known result, which can be derived from either this equations. That for any \(t > 0\) the OU process \(X_t\) and its integral \(Y_t\) will be the normal distribution with mean and variance given by: \[ \begin{cases} \text{E}(X_{t}) =x_{0} e^{-t/\mu} &\text{and}\quad\text{Var}(X_{t})=\frac{\sigma \mu}{2} \left (1-e^{-2t/\mu}\right )\\ \text{E}(Y_{t}) = y_{0}+x_{0}\mu \left (1-e^{-t/\mu}\right ) &\text{and}\quad\text{Var}(Y_{t})=\sigma\mu^{3}\left (\frac{t}{\mu}-2\left (1-e^{-t/\mu}\right )+\frac{1}{2}\left (1-e^{-2t/\mu}\right )\right ) \end{cases} \]
Hence we can just make use of the rsde2d()
function to build our random number for \((X_{t},Y_{t})\) at time \(t = 10\).
R> out <- rsde2d(object = mod2d, at = 10)
R> head(out,n=10)
x y
1 0.605260 17.4761
2 0.038043 10.0443
3 -1.044941 14.9122
4 0.558719 13.9970
5 -0.133361 13.7066
6 -1.414328 8.8593
7 0.107658 10.6190
8 0.662425 18.4829
9 0.729330 10.1667
10 -0.188384 17.4795
R> summary(out)
x y
Min. :-3.287 Min. :-3.08
1st Qu.:-0.399 1st Qu.:11.21
Median : 0.226 Median :14.91
Mean : 0.212 Mean :14.76
3rd Qu.: 0.822 3rd Qu.:18.28
Max. : 2.954 Max. :28.79
R> cov(out)
x y
x 0.81247 2.3758
y 2.37577 26.8571
Figure 4, show simulation results for moments of system :
R> mx <- apply(mod2d$X,1,mean)
R> my <- apply(mod2d$Y,1,mean)
R> Sx <- apply(mod2d$X,1,var)
R> Sy <- apply(mod2d$Y,1,var)
R> Cxy <- sapply(1:1001,function(i) cov(mod2d$X[i,],mod2d$Y[i,]))
R> out_b <- data.frame(mx,my,Sx,Sy,Cxy)
R> matplot(time(mod2d), out_b, type = "l", xlab = "time", ylab = "",col=2:6,lwd=2,lty=2:6,las=1)
R> legend("topleft",c(expression(hat(E)(X[t]),hat(E)(Y[t]),hat(Var)(X[t]),hat(Var)(Y[t]),hat(Cov)(X[t],Y[t]))),inset = .05,col=2:6,lty=2:6,lwd=2,cex=0.9)
For each SDE type and for each numerical scheme, the density of \(X_t\) and \(Y_t\) at time \(t=10\) are reported using dsde2d()
function, see e.g. Figure 5: the marginal density of \(X_t\) and \(Y_t\) at time \(t=10\).
R> denM <- dsde2d(mod2d,pdf="M",at =10)
R> denM
Marginal density of X(t-t0)|X(t0)=5 at time t = 10
Data: x (1000 obs.); Bandwidth 'bw' = 0.2038
x f(x)
Min. :-3.8978 Min. :0.00002
1st Qu.:-2.0319 1st Qu.:0.00391
Median :-0.1660 Median :0.05077
Mean :-0.1660 Mean :0.13385
3rd Qu.: 1.6998 3rd Qu.:0.25711
Max. : 3.5657 Max. :0.42899
Marginal density of Y(t-t0)|Y(t0)=0 at time t = 10
Data: y (1000 obs.); Bandwidth 'bw' = 1.172
y f(y)
Min. :-6.599 Min. :0.000004
1st Qu.: 3.127 1st Qu.:0.001576
Median :12.852 Median :0.012469
Mean :12.852 Mean :0.025680
3rd Qu.:22.578 3rd Qu.:0.051069
Max. :32.303 Max. :0.073983
R> plot(denM, main="Marginal Density")
Created using dsde2d()
plotted in (x, y)-space with dim = 2
. A contour
and image
plot of density obtained from a realization of system \((X_{t},Y_{t})\) at time t=10
.
R> denJ <- dsde2d(mod2d, pdf="J", n=100,at =10)
R> denJ
Joint density of (X(t-t0),Y(t-t0)|X(t0)=5,Y(t0)=0) at time t = 10
Data: (x,y) (2 x 1000 obs.);
x y f(x,y)
Min. :-3.2865 Min. :-3.0842 Min. :0.000000
1st Qu.:-1.7262 1st Qu.: 4.8840 1st Qu.:0.000028
Median :-0.1660 Median :12.8522 Median :0.000976
Mean :-0.1660 Mean :12.8522 Mean :0.004902
3rd Qu.: 1.3942 3rd Qu.:20.8204 3rd Qu.:0.005444
Max. : 2.9544 Max. :28.7886 Max. :0.035428
R> plot(denJ,display="contour",main="Bivariate Transition Density at time t=10")
R> plot(denJ,display="image",main="Bivariate Transition Density at time t=10")
A \(3\)D plot of the transition density at \(t=10\) obtained with:
R> plot(denJ,main="Bivariate Transition Density at time t=10")
We approximate the bivariate transition density over the set transition horizons \(t\in [1,10]\) by \(\Delta t = 0.005\) using the code:
R> for (i in seq(1,10,by=0.005)){
+ plot(dsde2d(mod2d, at = i,n=100),display="contour",main=paste0('Transition Density \n t = ',i))
+ }
Implemente in R as follows, with integration step size \(\Delta t = 0.01\) and using stochastic Runge-Kutta methods 1-stage.
R> mu = 4; sigma=0.1
R> fx <- expression( y , (mu*( 1-x^2 )* y - x))
R> gx <- expression( 0 ,2*sigma)
R> mod2d <- snssde2d(drift=fx,diffusion=gx,N=10000,Dt=0.01,type="str",method="rk1")
R> mod2d
Stratonovich Sde 2D:
| dX(t) = Y(t) * dt + 0 o dW1(t)
| dY(t) = (mu * (1 - X(t)^2) * Y(t) - X(t)) * dt + 2 * sigma o dW2(t)
Method:
| Runge-Kutta method with order 1
Summary:
| Size of process | N = 10001.
| Number of simulation | M = 1.
| Initial values | (x0,y0) = (0,0).
| Time of process | t in [0,100].
| Discretization | Dt = 0.01.
For plotting (back in time) using the command plot
, and plot2d
in plane the results of the simulation are shown in Figure 8.
R> plot2d(mod2d) ## in plane (O,X,Y)
R> plot(mod2d) ## back in time
snssde3d()
The following \(3\)-dimensional SDE’s with a vector of drift and a diagonal matrix of diffusion coefficients:
Itô form: \[\begin{equation}\label{eq17} \begin{cases} dX_t = f_{x}(t,X_{t},Y_{t},Z_{t}) dt + g_{x}(t,X_{t},Y_{t},Z_{t}) dW_{1,t}\\ dY_t = f_{y}(t,X_{t},Y_{t},Z_{t}) dt + g_{y}(t,X_{t},Y_{t},Z_{t}) dW_{2,t}\\ dZ_t = f_{z}(t,X_{t},Y_{t},Z_{t}) dt + g_{z}(t,X_{t},Y_{t},Z_{t}) dW_{3,t} \end{cases} \end{equation}\] Stratonovich form: \[\begin{equation}\label{eq18} \begin{cases} dX_t = f_{x}(t,X_{t},Y_{t},Z_{t}) dt + g_{x}(t,X_{t},Y_{t},Z_{t}) \circ dW_{1,t}\\ dY_t = f_{y}(t,X_{t},Y_{t},Z_{t}) dt + g_{y}(t,X_{t},Y_{t},Z_{t}) \circ dW_{2,t}\\ dZ_t = f_{z}(t,X_{t},Y_{t},Z_{t}) dt + g_{z}(t,X_{t},Y_{t},Z_{t}) \circ dW_{3,t} \end{cases} \end{equation}\]\(W_{1,t}\), \(W_{2,t}\) and \(W_{3,t}\) is a 3 independent standard Wiener process. To simulate this system using snssde3d()
function we need to specify:
drift
(3d) and diffusion
(3d) coefficients as R expressions that depend on the state variables x
, y
, z
and time variable t
.N
(default: N=1000
).M
(default: M=1
).t0
, x0
and end time T
(default: t0=0
, x0=c(0,0,0)
and T=1
).Dt
(default: Dt=(T-t0)/N
).type="ito"
for Ito or type="str"
for Stratonovich (default type="ito"
).method
(default method="euler"
).We simulate a flow of \(10000\) trajectories, with integration step size \(\Delta t = 0.001\).
R> fx <- expression(4*(-1-x)*y , 4*(1-y)*x , 4*(1-z)*y)
R> gx <- rep(expression(0.2),3)
R> mod3d <- snssde3d(x0=c(x=2,y=-2,z=-2),drift=fx,diffusion=gx,M=1000)
R> mod3d
Itô Sde 3D:
| dX(t) = 4 * (-1 - X(t)) * Y(t) * dt + 0.2 * dW1(t)
| dY(t) = 4 * (1 - Y(t)) * X(t) * dt + 0.2 * dW2(t)
| dZ(t) = 4 * (1 - Z(t)) * Y(t) * dt + 0.2 * dW3(t)
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 1001.
| Number of simulation | M = 1000.
| Initial values | (x0,y0,z0) = (2,-2,-2).
| Time of process | t in [0,1].
| Discretization | Dt = 0.001.
The following statistical measures (S3 method
) for class snssde3d()
can be approximated for the \((X_{t},Y_{t},Z_{t})\) process at any time \(t\), for example at=1
:
R> s = 1
R> mean(mod3d, at = s)
[1] -0.79985 0.87161 0.79477
R> moment(mod3d, at = s , center = TRUE , order = 2) ## variance
[1] 0.0092235 0.0937483 0.0095991
R> Median(mod3d, at = s)
[1] -0.80874 0.84600 0.79681
R> Mode(mod3d, at = s)
[1] -0.81857 0.78889 0.78792
R> quantile(mod3d , at = s)
$x
0% 25% 50% 75% 100%
-1.04829 -0.86966 -0.80874 -0.73775 -0.45068
$y
0% 25% 50% 75% 100%
0.056109 0.670975 0.845998 1.058578 1.913511
$z
0% 25% 50% 75% 100%
0.44797 0.73410 0.79681 0.86127 1.05977
R> kurtosis(mod3d , at = s)
[1] 3.2379 3.2295 3.0485
R> skewness(mod3d , at = s)
[1] 0.41864 0.39115 -0.21822
R> cv(mod3d , at = s )
[1] -0.12013 0.35146 0.12334
R> min(mod3d , at = s)
[1] -1.048285 0.056109 0.447965
R> max(mod3d , at = s)
[1] -0.45068 1.91351 1.05977
R> moment(mod3d, at = s , center= TRUE , order = 4)
[1] 0.00027601 0.02844016 0.00028146
R> moment(mod3d, at = s , center= FALSE , order = 4)
[1] 0.44379 1.07213 0.43500
The summary of the results of mod3d
at time \(t=1\) of class snssde3d()
is given by:
R> summary(mod3d, at = s)
Monte-Carlo Statistics for (X(t),Y(t),Z(t)) at time t = 1
X Y Z
Mean -0.79985 0.87161 0.79477
Variance 0.00923 0.09384 0.00961
Median -0.80874 0.84600 0.79681
Mode -0.81857 0.78889 0.78792
First quartile -0.86966 0.67097 0.73410
Third quartile -0.73775 1.05858 0.86127
Minimum -1.04829 0.05611 0.44797
Maximum -0.45068 1.91351 1.05977
Skewness 0.41864 0.39115 -0.21822
Kurtosis 3.23793 3.22951 3.04848
Coef-variation -0.12013 0.35146 0.12334
3th-order moment 0.00037 0.01124 -0.00021
4th-order moment 0.00028 0.02844 0.00028
5th-order moment 0.00003 0.00961 -0.00002
6th-order moment 0.00002 0.01469 0.00001
For plotting (back in time) using the command plot
, and plot3D
in space the results of the simulation are shown in Figure 9.
R> plot(mod3d,union = TRUE) ## back in time
R> plot3D(mod3d,display="persp") ## in space (O,X,Y,Z)
3D SDEs
Hence we can just make use of the rsde3d()
function to build our random number for \((X_{t},Y_{t},Z_{t})\) at time \(t = 1\).
R> out <- rsde3d(object = mod3d, at = s)
R> head(out,n=10)
x y z
1 -0.72964 0.74243 0.85396
2 -0.68972 0.72162 0.62938
3 -0.83193 0.57660 0.83239
4 -0.75814 0.59987 0.65566
5 -0.82004 0.76703 0.81252
6 -0.67802 0.71623 0.90862
7 -0.75356 0.54518 0.58515
8 -0.76021 1.09544 0.78467
9 -0.73605 0.58832 0.68057
10 -0.94260 0.91681 0.70699
R> summary(out)
x y z
Min. :-1.048 Min. :0.0561 Min. :0.448
1st Qu.:-0.870 1st Qu.:0.6710 1st Qu.:0.734
Median :-0.809 Median :0.8460 Median :0.797
Mean :-0.800 Mean :0.8716 Mean :0.795
3rd Qu.:-0.738 3rd Qu.:1.0586 3rd Qu.:0.861
Max. :-0.451 Max. :1.9135 Max. :1.060
R> cov(out)
x y z
x 0.0092327 -0.015766 -0.0037222
y -0.0157659 0.093842 0.0163150
z -0.0037222 0.016315 0.0096087
For each SDE type and for each numerical scheme, the marginal density of \(X_t\), \(Y_t\) and \(Z_t\) at time \(t=1\) are reported using dsde3d()
function, see e.g. Figure 10.
R> den <- dsde3d(mod3d,pdf="M",at =1)
R> den
Marginal density of X(t-t0)|X(t0)=2 at time t = 1
Data: x (1000 obs.); Bandwidth 'bw' = 0.02172
x f(x)
Min. :-1.11345 Min. :0.0002
1st Qu.:-0.93147 1st Qu.:0.1054
Median :-0.74948 Median :0.6633
Mean :-0.74948 Mean :1.3724
3rd Qu.:-0.56750 3rd Qu.:2.7325
Max. :-0.38551 Max. :4.3231
Marginal density of Y(t-t0)|Y(t0)=-2 at time t = 1
Data: y (1000 obs.); Bandwidth 'bw' = 0.06539
y f(y)
Min. :-0.14007 Min. :0.00010
1st Qu.: 0.42237 1st Qu.:0.04042
Median : 0.98481 Median :0.24352
Mean : 0.98481 Mean :0.44406
3rd Qu.: 1.54725 3rd Qu.:0.81514
Max. : 2.10969 Max. :1.38751
Marginal density of Z(t-t0)|Z(t0)=-2 at time t = 1
Data: z (1000 obs.); Bandwidth 'bw' = 0.02146
z f(z)
Min. :0.38360 Min. :0.0002
1st Qu.:0.56873 1st Qu.:0.0917
Median :0.75387 Median :0.7179
Mean :0.75387 Mean :1.3491
3rd Qu.:0.93900 3rd Qu.:2.5052
Max. :1.12413 Max. :4.0333
R> plot(den, main="Marginal Density")
For an approximate joint transition density for \((X_t,Y_t,Z_t)\) (for more details, see package sm or ks.)
R> denJ <- dsde3d(mod3d,pdf="J")
R> plot(denJ,display="rgl")
with initial conditions \((X_{0},Y_{0},Z_{0})=(1,1,1)\), by specifying the drift and diffusion coefficients of three processes \(X_{t}\), \(Y_{t}\) and \(Z_{t}\) as R expressions which depends on the three state variables (x,y,z)
and time variable t
, with integration step size Dt=0.0001
.
R> K = 4; s = 1; sigma = 0.2
R> fx <- expression( (-K*x/sqrt(x^2+y^2+z^2)) , (-K*y/sqrt(x^2+y^2+z^2)) , (-K*z/sqrt(x^2+y^2+z^2)) )
R> gx <- rep(expression(sigma),3)
R> mod3d <- snssde3d(drift=fx,diffusion=gx,N=10000,x0=c(x=1,y=1,z=1))
R> mod3d
Itô Sde 3D:
| dX(t) = (-K * X(t)/sqrt(X(t)^2 + Y(t)^2 + Z(t)^2)) * dt + sigma * dW1(t)
| dY(t) = (-K * Y(t)/sqrt(X(t)^2 + Y(t)^2 + Z(t)^2)) * dt + sigma * dW2(t)
| dZ(t) = (-K * Z(t)/sqrt(X(t)^2 + Y(t)^2 + Z(t)^2)) * dt + sigma * dW3(t)
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 10001.
| Number of simulation | M = 1.
| Initial values | (x0,y0,z0) = (1,1,1).
| Time of process | t in [0,1].
| Discretization | Dt = 0.0001.
The results of simulation are shown:
R> plot3D(mod3d,display="persp",col="blue")
run by calling the function snssde3d()
to produce a simulation of the solution, with \(\mu = 1\) and \(\sigma = 1\).
R> fx <- expression(y,0,0)
R> gx <- expression(z,1,1)
R> modtra <- snssde3d(drift=fx,diffusion=gx,M=1000,type="str")
R> modtra
Stratonovich Sde 3D:
| dX(t) = Y(t) * dt + Z(t) o dW1(t)
| dY(t) = 0 * dt + 1 o dW2(t)
| dZ(t) = 0 * dt + 1 o dW3(t)
Method:
| Euler scheme with order 0.5
Summary:
| Size of process | N = 1001.
| Number of simulation | M = 1000.
| Initial values | (x0,y0,z0) = (0,0,0).
| Time of process | t in [0,1].
| Discretization | Dt = 0.001.
R> summary(modtra)
Monte-Carlo Statistics for (X(t),Y(t),Z(t)) at time t = 1
X Y Z
Mean -0.03370 -0.06637 -0.01571
Variance 0.80281 0.96396 0.96160
Median -0.05583 -0.03795 -0.02365
Mode -0.14771 0.12565 -0.07586
First quartile -0.52031 -0.72023 -0.69051
Third quartile 0.45321 0.57364 0.63421
Minimum -4.06546 -3.78095 -3.21498
Maximum 5.73258 3.03095 3.55463
Skewness 0.31378 -0.10885 0.01810
Kurtosis 6.28872 3.23703 3.16024
Coef-variation -26.58940 -14.79238 -62.40626
3th-order moment 0.22570 -0.10302 0.01707
4th-order moment 4.05308 3.00792 2.92220
5th-order moment 7.94984 -1.44217 0.11985
6th-order moment 65.53119 16.71270 15.28423
the following code produces the result in Figure 12.
R> plot(modtra$X,plot.type="single",ylab=expression(X[t]))
R> lines(time(modtra),apply(modtra$X,1,mean),col=2,lwd=2)
R> legend("topleft",c("mean path"),col=2,lwd=2,cex=0.8)
Simulation of \(X_t\)
The histogram and kernel density of \(X_t\) at time \(t=1\) are reported using dsde3d()
function, see e.g. Figure 13.
R> den <- dsde3d(modtra,pdf="Marginal",at=1)
R> den$resx
Call:
density.default(x = x, na.rm = TRUE)
Data: x (1000 obs.); Bandwidth 'bw' = 0.1642
x y
Min. :-4.558 Min. :0.00003
1st Qu.:-1.862 1st Qu.:0.00176
Median : 0.834 Median :0.00435
Mean : 0.834 Mean :0.09264
3rd Qu.: 3.529 3rd Qu.:0.11711
Max. : 6.225 Max. :0.55426
R> MASS::truehist(den$ech$x,xlab = expression(X[t==1]));box()
R> lines(den$resx,col="red",lwd=2)
R> legend("topleft",c("Distribution histogram","Kernel Density"),inset =.01,pch=c(15,NA),lty=c(NA,1),col=c("cyan","red"), lwd=2,cex=0.8)
Figure 14 and 15, show approximation results for \(m_{1}(t)= \text{E}(X_{t})\), \(S_{1}(t)=\text{V}(X_{t})\) and \(C(s,t)=\text{Cov}(X_{s},X_{t})\):
R> m1 <- apply(modtra$X,1,mean) ## m1(t)
R> S1 <- apply(modtra$X,1,var) ## s1(t)
R> out_a <- data.frame(m1,S1)
R> matplot(time(modtra), out_a, type = "l", xlab = "time", ylab = "", col=2:3,lwd=2,lty=2:3,las=1)
R> legend("topleft",c(expression(m[1](t),S[1](t))),inset = .09,col=2:3,lty=2:3,lwd=2,cex=0.9)
R> color.palette=colorRampPalette(c('white','green','blue','red'))
R> filled.contour(time(modtra), time(modtra), cov(t(modtra$X)), color.palette=color.palette,plot.title = title(main = expression(paste("Covariance empirique:",cov(X[s],X[t]))),xlab = "time", ylab = "time"),key.title = title(main = ""))
snssdekd()
& dsdekd()
& rsdekd()
- Monte-Carlo Simulation and Analysis of Stochastic Differential Equations.bridgesdekd()
& dsdekd()
& rsdekd()
- Constructs and Analysis of Bridges Stochastic Differential Equations.fptsdekd()
& dfptsdekd()
- Monte-Carlo Simulation and Kernel Density Estimation of First passage time.MCM.sde()
& MEM.sde()
- Parallel Monte-Carlo and Moment Equations for SDEs.TEX.sde()
- Converting Sim.DiffProc Objects to LaTeX.fitsde()
- Parametric Estimation of 1-D Stochastic Differential Equation.Boukhetala K (1996). Modelling and Simulation of a Dispersion Pollutant with Attractive Centre, volume 3, pp. 245-252. Computer Methods and Water Resources, Computational Mechanics Publications, Boston, USA.
Guidoum AC, Boukhetala K (2018). Performing Parallel Monte Carlo and Moment Equations Methods for Itô and Stratonovich Stochastic Differential Systems: R Package Sim.DiffProc. Preprint submitted to Journal of Statistical Software.
Guidoum AC, Boukhetala K (2018). Sim.DiffProc: Simulation of Diffusion Processes. R package version 4.3, URL https://cran.r-project.org/package=Sim.DiffProc.
Department of Probabilities & Statistics, Faculty of Mathematics, University of Science and Technology Houari Boumediene, BP 32 El-Alia, U.S.T.H.B, Algeria, E-mail (acguidoum@usthb.dz)↩
Faculty of Mathematics, University of Science and Technology Houari Boumediene, BP 32 El-Alia, U.S.T.H.B, Algeria, E-mail (kboukhetala@usthb.dz)↩
The equivalently of \(X_{t}^{\text{mod1}}\) the following Stratonovich SDE: \(dX_{t} = \theta X_{t} \circ dW_{t}\).↩