mirtjml: Joint Maximum Likelihood Estimation for High-Dimensional Item Factor Analysis

Provides constrained joint maximum likelihood estimation algorithms for item factor analysis (IFA) based on multidimensional item response theory models. So far, we provide functions for exploratory and confirmatory IFA based on the multidimensional two parameter logistic (M2PL) model for binary response data. Comparing with traditional estimation methods for IFA, the methods implemented in this package scale better to data with large numbers of respondents, items, and latent factors. The computation is facilitated by multiprocessing 'OpenMP' API. For more information, please refer to: 1. Chen, Y., Li, X., & Zhang, S. (2018). Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis. Psychometrika, 1-23. <doi:10.1007/s11336-018-9646-5>; 2. Chen, Y., Li, X., & Zhang, S. (2017). Structured Latent Factor Analysis for Large-scale Data: Identifiability, Estimability, and Their Implications. arXiv preprint <arXiv:1712.08966>.

Version: 1.2
Depends: R (≥ 3.1)
Imports: Rcpp (≥ 0.12.17), stats, GPArotation
LinkingTo: Rcpp, RcppArmadillo
Published: 2018-12-21
Author: Siliang Zhang [aut, cre], Yunxiao Chen [aut], Xiaoou Li [aut]
Maintainer: Siliang Zhang <zhangsiliang123 at gmail.com>
BugReports: https://github.com/slzhang-fd/mirtjml/issues
License: GPL-3
URL: https://github.com/slzhang-fd/mirtjml
NeedsCompilation: yes
Materials: README NEWS
In views: Psychometrics
CRAN checks: mirtjml results


Reference manual: mirtjml.pdf
Package source: mirtjml_1.2.tar.gz
Windows binaries: r-devel: mirtjml_1.2.zip, r-release: mirtjml_1.2.zip, r-oldrel: mirtjml_1.2.zip
OS X binaries: r-release: mirtjml_1.2.tgz, r-oldrel: mirtjml_1.2.tgz


Please use the canonical form https://CRAN.R-project.org/package=mirtjml to link to this page.