Online Time Series Anomaly Detectors
This package provides anomaly detectors in the context of online time series and their evaluation with the Numenta score.
CAD-OSE algorithm is implemented in Python. It uses bencode library in the hashing step. This dependency can be installed with the Python package manager pip.
You can install the released version of otsad from CRAN with:
# Get the released version from CRAN
install.packages("otsad")
# Get the latest development version from GitHub
devtools::install_github("alaineiturria/otsad")
This is a basic example of the use of otsad package:
library(otsad)
## basic example code
set.seed(100)
n <- 500
x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace = TRUE) # distributional shift
x[25] <- 200 # abrupt transient anomaly
x[320] <- 170 # abrupt transient anomaly
df <- data.frame(timestamp = 1:n, value = x)
result <- CpSdEwma(data = df$value, n.train = 5, threshold = 0.01, l = 3)
res <- cbind(df, result)
PlotDetections(res, title = "SD-EWMA ANOMALY DETECTOR", return.ggplot = TRUE)
For more details, see otsad documentation and vignettes.