
Package ‘stsm’
October 23, 2016

Version 1.9

Date 2016-10-23

Title Structural Time Series Models

Description Fit the basic structural time series model by maximum likelihood.

Author Javier López-de-Lacalle <javlacalle@yahoo.es>

Maintainer Javier López-de-Lacalle <javlacalle@yahoo.es>

Depends R (>= 3.0.0)

Imports KFKSDS, methods, parallel, stats

Suggests mvtnorm, numDeriv

NeedsCompilation yes

Encoding UTF-8

License GPL-2

URL http://jalobe.com

Repository CRAN

Date/Publication 2016-10-23 22:58:17

R topics documented:
stsm-package . 2
barrier.eval . 3
datagen.stsm . 5
force.defpos . 6
gdp4795 . 7
init.vars . 7
linesearch . 8
maxlik.em . 10
maxlik.fd . 13
maxlik.td . 16
method-logLik . 19
methods-stsmFit . 20
methods-vcov-confint . 22

1

http://jalobe.com

2 stsm-package

mloglik.fd . 25
mloglik.td . 29
sim-data . 32
stsm-char2numeric-methods . 33
stsm-class . 35
stsm-get-methods . 37
stsm-set-methods . 40
stsm-show-methods . 43
stsm-transPars-methods . 44
stsm-validObject-methods . 48
stsm.model . 49
stsm.sgf . 52
stsmFit . 55

Index 56

stsm-package Structural Time Series Models

Description

This package provides algorithms to fit structural time series models by maximum likelihood.

Details

As witnessed in the special issue of the Journal of Statistical Software (Commandeur et al., 2011),
the prevalent procedure to fit a structural time series model is as follows: 1) choose arbitrary starting
values for the parameters, 2) evaluate the log-likelihood function by means of the Kalman filter, 3)
obtain a new set of parameter values that lead to a higher value of the log-likelihood function by
means of the L-BFGS-B algorithm, 4) iterate the searching procedure until a predetermined degree
of convergence.

Considering that there are several packages in R to run the Kalman filter (see for instance Tusell,
2011 and the documentation in package KFKSDS) and that the optim function in the stats package
provides and interface to the L-BFGS-B and to other optimization algorithms, fitting a structural
time series model may seem a simple procedure that requires little more than translating the matrices
of the state space form of the model into the syntax of the chosen interface.

In practice, the process is not always that straightforward. As stated in the documentation of
StructTS, optimization of structural models is a lot harder than many of the references admit.
There are several details that should be taken into account when implementing the procedure de-
scribed above, (López-de-Lacalle, 2013).

There are not many packages in R that provide alternative procedures to fit structural models. It is
probably a consequence of the widespread believe that all that is needed to carry out and analysis
with structural time series models is an implementation of the Kalman filter together with a general
purpose optimization algorithm.

The package stsm implements specific algorithms to fit models in the framework of the basic struc-
tural time series model. The following enhancements to general purpose optimization algorithms
are implemented: scoring algorithm based on analytical derivatives, maximization of the time or

barrier.eval 3

frequency domain likelihood function, automatic choice of the optimal step size, concentration of a
parameter, implementation of the original and a modified version of the expectation-maximization
algorithm.

References

Commandeur, J.J.F., Koopman, S.J. and Ooms, M. (2011). ‘Statistical Software for State Space
Methods’, Journal of Statistical Software, Vol. 41, No. 1, http://www.jstatsoft.org/v41/i01/.

Durbin, J. and Koopman, S.J. (2001). Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

Harvey, A.C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press.

López-de-Lacalle, J. (2013). ‘101 Variations on a Maximum Likelihood Procedure for a Structural
Time Series Model.’ Unpublished manuscript.

Tusell. F. (2011). ‘Kalman Filtering in R.’ Journal of Statistical Software, Vol. 39, No. 2. http:
//www.jstatsoft.org/v39/i02/.

Author(s)

Javier López-de-Lacalle <javlacalle@yahoo.es>

barrier.eval Barrier Term in the Likelihood Function

Description

This function evaluates a barrier term to be added to the log-likelihood function in order to penalize
for parameter values close to the boundaries.

Usage

barrier.eval(model, type = c("1", "2"), mu = 0.01,
gradient = FALSE, hessian = FALSE)

Arguments

model object of class stsm.

type a character indicating the type of barrier term.

mu the barrier multiplier. A positive value.

gradient logical. If TRUE, the first order derivatives of the barrier term with respect to the
parameters of the model are evaluated.

hessian logical. If TRUE, the second order derivatives of the barrier term with respect to
the parameters of the model are evaluated.

http://www.jstatsoft.org/v41/i01/
http://www.jstatsoft.org/v39/i02/
http://www.jstatsoft.org/v39/i02/

4 barrier.eval

Details

A barrier term can be defined in order to penalize against parameter values close to the boundaries
defined in model@lower and model@upper. The barrier term is added to the negative of the log-
likelihood function, which is then given by:

−logLik + µ
∑
i

qi(x).

µ is a positive barrier multiplier, the larger it is the stronger the barrier is and, hence, the search is
done farther from the boundaries (Rardin, 1998 Fig. 14.8); qi(x) are the barrier functions that are
defined in such a way that the barrier term grows to infinity as the parameters of the model approach
to the boundaries. Two types of barrier functions are considered:

type = "1": −log(par[i]− bound[i]), for lower bound constraints.

type = "1": −log(bound[i]− par[i]), for upper bound constraints.

type = "2": 1/(par[i]− bound[i]), for lower bound constraints.

type = "2": 1/(bound[i]− par[i]), for upper bound constraints.

Value

A list containing the barrier term evaluated for the lower and upper bound constraints, bl and bu,
respectively, and the first and second order derivatives of the barrier term, dl1, du1, dl2, du2.

References

Rardin, R.L. (1998). Section 14.5. Optimization in Operations Research. Prentice Hall.

See Also

mloglik.fd, mloglik.td.

Examples

define local level plus seasonal model for a simulated time series
and evaluate the barrier term for some parameter values
the barrier term in the second model is higher since the variances
are closer to the lower bounds (zero)
data("llmseas")
pars <- c("var1" = 30, "var2" = 1, "var3" = 10)
m1 <- stsm.model(model = "llm+seas", y = llmseas, pars = pars)
bar1 <- barrier.eval(m1, type = "2", mu = 3)
bar1$barrier

pars <- c("var1" = 0.3, "var2" = 0.01, "var3" = 0.1)
m2 <- stsm.model(model = "llm+seas", y = llmseas, pars = pars)
bar2 <- barrier.eval(m2, type = "2", mu = 3)
bar2$barrier

the barrier term is added to the negative of the likelihood function

datagen.stsm 5

that will be the objective function to be minimized,
value of minus log-likelihood without barrier
mloglik.fd(model = m2)
adding a barrier term
mloglik.fd(model = m2) + bar2$barrier
mloglik.fd(model = m2, barrier = list(type = "2", mu = 3))

datagen.stsm Generate Data from a Structural Time Series Model

Description

This function simulates data from a structural time series model defined in an object of class stsm.

Usage

datagen.stsm(n, model = list(), SigmaEV, labels, n0 = 20, freq = 1,
old.version = FALSE)

Arguments

n number of observations in the output time series.

model a list containing the matrices of the state space for of the structural model.

SigmaEV a list containing the elements values and vectors, they are respectively the
eigen values and vectors of the covariance matrix of the disturbance terms in the
state equation of the model.

labels optional vector of characters giving the names of the unobserved components in
the model.

n0 number of warming-up observations (they are not included in the output data).

freq number of observations per unit of time, e.g. freq = 4 for quarterly data.

old.version logical. If TRUE, results obtained in a previous version of the package are repro-
duced.

Details

The matrices in the argument model must follow the conventions of an object of class stsm as
returned by char2numeric.

For compatibility with previous versions of the package, old.version = TRUE generates random
values from the multivariate normal distribution using the function rmvnorm with pre0.9_9994 = TRUE.
mvrnorm.version = FALSE uses the theoretical expression that is commonly used to define random
draws for the multivariate normal distribution.

Value

A list containing the output time series and the underlying components of the model.

6 force.defpos

See Also

sim-data, stsm.

Examples

generate a quarterly series from a local level plus seasonal model
the data set 'llmseas' is generated as follows (first series)
pars <- c(var1 = 300, var2 = 10, var3 = 100)
m <- stsm.model(model = "llm+seas", y = ts(seq(120), frequency = 4),

pars = pars, nopars = NULL)
ss <- char2numeric(m)
set.seed(123)
y <- datagen.stsm(n = 120, model = list(Z = ss$Z, T = ss$T, H = ss$H, Q = ss$Q),

n0 = 20, freq = 4, old.version = TRUE)$data

data("llmseas")
all.equal(y, llmseas)

force.defpos Force Positive Definiteness of a Matrix

Description

This function transforms a matrix to be positive definite.

Usage

force.defpos(m, tol = 0.001, debug = FALSE)

Arguments

m a matrix.

tol tolerance.

debug logical. If TRUE, it is checked that the output matrix is positive definite.

Details

The scoring algorithm maxlik.fd.scoring requires a positive definite matrix to project the gradi-
ent into the optimal direction. If that matrix happens to be non-positive definite then the matrix M
is transformed as described in Pollock (1999) pp. 341-342:

M = M + (µ− κ)I

where I is the identity matrix, µ is a tolerance value and κ is the smallest eigenvalue of M .

Other alternatives are discussed in Nocedal and Wright (2006) chapter 3.

gdp4795 7

Value

A positive definite matrix.

References

Nocedal, J. and Wright, J. W. (2006). Numerical Optimization. Springer-Verlag.

Pollock, D.S.G. (1999). A Handbook of Time-Series Analysis Signal Processing and Dynamics.
Academic Press.

gdp4795 USA Real Gross Domestic Product

Description

Quarterly U.S. real gross domestic product for the period 1947:I-1995:III.

Usage

gdp4795

Format

A time series object.

References

Clark, P.K. (1987). ‘The Cyclical Component of U.S. Economic Activity’, Quarterly Journal of
Economics, 102(4), pp. 797-814.

init.vars Initial Parameter Values

Description

This function computes initial variance parameters to be used as starting parameter values in an
optimization procedure.

Usage

init.vars(model, debug = FALSE)

Arguments

model an object of class stsm.

debug logical. If TRUE, the correctness if the result is double-checked.

8 linesearch

Details

As mentioned in Harvey (1989), the frequency domain representation of the structural model sug-
gests using a linear regression to compute initial variance parameters from which to start an opti-
mization procedure. The variable 2π times the periodogram is regressed on the constant terms of
the spectral generating function of the model.

Value

A list containing the initial variance parameters and the output of the linear regression.

References

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press.

See Also

maxlik.fd, stsm.sgf.

linesearch Choice of the Step Size in the Scoring Algorithm

Description

These functions are used by the scoring optimization algorithms in order to choose the step size.

Usage

Brent.fmin(a = 0, b, fcn, tol = .Machine$double.eps^0.25, ...)
linesearch(b, fcn, grd, ftol = 0.0001, gtol = 0.9, ...)
step.maxsize(x, xlo, xup, pd, cap = 1)

Arguments

a a numeric, lower end point of the interval where a line search procedure will
search for the optimum step size. It should be zero or a positive value.

b a numeric, upper end point of the searching interval.

fcn a function to be optimized with respect to the step size.

tol the tolerance for convergence of the line search procedure.

grd a function returning the gradient of fcn.

ftol a numeric, tolerance of the Wolfe condition related to the value of the function.

gtol a numeric, tolerance of the Wolfe condition related to the gradient.

x a numeric containing the current value of the parameters.

xlo a numeric, lower bounds of the parameters of the model.

linesearch 9

xup a numeric, upper bounds of the parameters of the model.
pd a numeric, direction vector chosen by the scoring algorithm.
cap the maximum step size allowed, the default is 1.
... arguments to be passed to the objective function or the gradient.

Details

These functions are intended to be called by other functions, not to be used directly by the user. For
details about how fcn and grd should be defined see the source code of maxlik.fd.scoring and
maxlik.td.scoring.
The default line search procedure used by the scoring algorithms is the univariate optimization
function optimize from package stats. The functions linesearch and Brent.fmin are used for
debugging, didactic and experimental purposes. They provide useful information when testing the
scoring algorithm and allowed easy tune of some parameters of the line search procedure. This kind
of information and options are not available for example in optim from package stats.
Brent.fmin is a version ported directly from the R sources (procedure Brent_fmin in file ‘optimize.c’).
linesearch is based on Nocedal and Wright (2006) chapter 3 and Pollock (1999) Chapter 12. It
can be used to test the effect and role of the Wolfe conditions.
The function step.maxsize is not a line search procedure. Given the direction vector chosen by the
scoring algorithm, this function returns the upper end of the interval where the line search procedure
will search for the optimum step size. It ensures that for any step size inside the interval from 0
to the returned value the updated parameter values abide to the lower and upper bounds. This
approach is also used by A. Clausen in his implementation of the BFGS algorithm. The use of this
function is a simple alternative to reparameterizations of the model and to the idea implemented in
the L-BFGS-B algorithm in order to deal with this kind of constraints.

Value

Brent.fmin and linesearch return a list containing:

vx a vector containing the optimal value at each iteration during the bracketing.
minimum the optimal value found in the last iteration.
fx the value of the function for the optimal step size.
iter number of iterations employed by the procedure.
counts number of calls to the objective function. For linesearch it is a two-element

vector where the second records the number of calls made to the gradient.

step.maxsize returns a numeric containing the highest possible that is compatible with the argu-
ments passed to the function (direction vector and bounds).

References

Brent, R. (1973) Algorithms for Minimization without Derivatives. Prentice-Hall.
Clausen, A. R code for the BFGS algorithm. http://economics.sas.upenn.edu/~clausen/
computing/optim.php.
Nocedal, J. and Wright, J. W. (2006). Numerical Optimization. Springer-Verlag.
Pollock, D.S.G. (1999). A Handbook of Time-Series Analysis Signal Processing and Dynamics.
Academic Press.

http://economics.sas.upenn.edu/~clausen/computing/optim.php
http://economics.sas.upenn.edu/~clausen/computing/optim.php
http://economics.sas.upenn.edu/~clausen/computing/optim.php

10 maxlik.em

See Also

maxlik.fd.scoring, maxlik.td.scoring.

maxlik.em Maximization of the Time Domain Likelihood Function via the
Expectation-Maximization Algorithm

Description

Maximize the time domain log-likelihood function of a structural time series model by means of
the Expectation-Maximization algorithm.

Usage

maxlik.em(model, type = c("standard", "modified", "mix"),
tol = 0.001, maxiter = 300, kfconv = c(0, 10, 1),
ur.maxiter = 1000, r.interval = c(0.001, var(model@y)*0.75, 20),
mod.steps = seq(3, maxiter, 10),
parallel = FALSE, num.cores = NULL)

Arguments

model an object of class stsm.

type a character choosing the implementation of the algorithm, the original (stan-
dard), a modified version or a mixture of both.

tol the convergence tolerance.

maxiter the maximum number of iterations.

kfconv a length-three vector with control parameters used to determine whether the
Kalman filter has converged at a given iteration.

ur.maxiter the maximum number of iterations used in the root finding procedure. Ignored
with type = "standard".

r.interval a three-length vector to control the ends of the interval in the root finding proce-
dure.

mod.steps a vector indicating the iterations at which the modified EM algorithm is to be
run. Only for type = "mix".

parallel logical. If TRUE the process is run in parallel by means of function mclapply in
package parallel.

num.cores an optional numeric. The number of processes executed in parallel if parallel
is TRUE. By default it is set equal to the number of CPU cores.

maxlik.em 11

Details

This function is based on the discussion given in López-de-Lacalle (2013) about the Expectation-
Maximization (EM) algorithm in the context of structural time series models The previous reference
includes an R package called stsm.em but since it uses some non-standard options it has not been
distributed. A version of the most relevant procedures is provided in the function maxlik.em.

The traditional design of the EM algorithm in the context of structural time series models is run
with type = "standard". This approach is described for instance in Durbin and Koopman
(2001) Section 7.3.4. A modified version introduced in López-de-Lacalle (2013) can be run us-
ing type = "modified". A mixture of both approaches is also possible by setting type = "mix".
In that case, the modified version is run at those iterations indicated in mod.steps and the traditional
version is run in the remaining iterations. As we do not know beforehand the number of iterations
required for convergence, mod.steps should be defined considering up to maxiter possible itera-
tions.

In pure variance models, the Kalman filter may converge to a steady state. The parameters in
kfconv control how convergence of the filter is determined. It is considered that convergence is
reached when the following is observed: the change in the variance of the prediction error over the
last kfconv[2] consecutive iterations of the filter is below the tolerance kfconv[1]. The iteration
at which the the Kalman smoother has converged is the iteration where the Kalman filter converged
multiplied by the factor kfconv[3]. If provided, kfconv[3] should be equal or greater than unity.

The argument r.interval is a three-length vector. The first two elements are the initial lower
and upper ends of the interval where the variance parameters are searched. The third element is
the first iteration of the EM algorithm after which the initial searching interval is narrowed. A
relatively width initial interval is recommended. As the algorithm makes progress, the interval is
automatically narrowed according to the values and path followed in the first r.interval[3] and
subsequent iterations.

Value

A list containing the elements:

Mpars a matrix with the values of the parameters stored by row for each iteration of the
procedure.

pars parameter values at the local optimum or point where the algorithm stopped.

iter number of iterations until convergence or stopping.

For type = "modified" or type = "mix" the element calls.v1 is also returned. It reports,
for each parameter, the number of calls that were done to the traditional version due to failure to
convergence of the root finding procedure.

References

Durbin, J. and Koopman, S.J. (2001). Section 7.3.4. Time Series Analysis by State Space Methods.
Oxford University Press.

Harvey, A. C. (1989). Section 4.2.4. Forecasting, Structural Time Series Models and the Kalman
Filter. Cambridge University Press.

Koopman, S.J. and Shephard, N. (1992) Exact Score for Time Series Models in State Space Form.
Biometrika 79(4), pp. 823-826.

12 maxlik.em

Koopman, S.J. (1993). Disturbance Smoother for State Space Models. Biometrika 80(1), pp. 117-
126.

López-de-Lacalle, J. (2013). ‘Why Does the Expectation-Maximization Algorithm Converge Slowly
in Pure Variance Structural Time Series Models?’ Unpublished manuscript.

Shumway, R.H. and Stoffer, D.S. (1982) An Approach to Time Series Smoothing and Forecasting
Using the EM Algorithm. Journal of Time Series Analysis 3(4), pp. 253-264.

See Also

maxlik.td.

Examples

fit a local level plus seasonal model to a simulated sample series
using the three versions of the EM algorithm
the same solution is found by all versions (up to a tolerance)
the modified version converges in fewer iterations, yet it involves
more computations
data("llmseas")
m <- stsm.model(model = "llm+seas", y = llmseas,

pars = c(var1 = 1, var2 = 1, var3 = 1))

original version
res1 <- maxlik.em(m, type = "standard",

tol = 0.001, maxiter = 350, kfconv = c(0.01, 10, 1))
res1$pars
res1$iter

modified version
res2 <- maxlik.em(m, type = "modified",

tol = 0.001, maxiter = 250, kfconv = c(0.01, 10, 1),
ur.maxiter = 1000, r.interval = c(0.001, var(m@y)*0.75, 20))

res2$pars
res2$iter
res2$calls.v1

mixture, the modified version is run every 10 iterations
starting in the third one
res3 <- maxlik.em(m, type = "mix",

tol = 0.001, maxiter = 250, kfconv = c(0.01, 10, 1),
ur.maxiter = 1000, r.interval = c(0.001, var(m@y)*0.75, 20),
mod.steps = seq(3, 200, 10))

res3$pars
res3$iter
res3$calls.v1

maxlik.fd 13

maxlik.fd Maximization of the Spectral Likelihood Function

Description

Maximize the spectral log-likelihood function of a structural time series model by means of a scor-
ing algorithm or a general purpose optimization algorithm available in optim.

Usage

maxlik.fd.optim(m,
barrier = list(type = c("1", "2"), mu = 0), inf = 99999,
method = c("BFGS", "L-BFGS-B", "Nelder-Mead", "CG", "SANN"),
gr = c("analytical", "numerical"), optim.control = list())

maxlik.fd.scoring(m, step = NULL,
information = c("expected", "observed", "mix"),
ls = list(type = "optimize", tol = .Machine$double.eps^0.25, cap = 1),
barrier = list(type = c("1", "2"), mu = 0),
control = list(maxit = 100, tol = 0.001, trace = FALSE, silent = FALSE),
debug = FALSE)

maxclik.fd.scoring(m, step = NULL, information = c("expected", "observed"),
ls = list(type = "optimize", tol = .Machine$double.eps^0.25, cap = 1),
barrier = list(type = c("1", "2"), mu = 0),
control = list(maxit = 100, tol = 0.001, trace = FALSE, silent = FALSE))

Arguments

m an object of class stsm.

barrier a list defining a barrier term to penalize parameter values close to the bounds
m@lower and m@upper.

inf a numeric indicating the value to be returned if the value of the log-likelihood
function happens to be NA or non-finite at some iteration of the optimization
procedure.

method character indicating the method to be used by optim.

gr character indicating whether numerical or analytical derivatives should be used.

optim.control a list of control parameters passed to optim.

step if it is a numeric it stands for a fixed step size, otherwise an automatic procedure
is used to choose the step size.

information the type of information about second order derivatives used to project the gradi-
ent in the scoring algorithm.

ls control parameters for the line search procedure used to chose the step size in
the scoring algorithm.

14 maxlik.fd

control a list of control parameters for the scoring algorithm.

debug logical. If TRUE, tracing information is printed for debugging purposes of the
scoring algorithm.

Details

The matrix used to project the gradient may be based on expected or observed information. The
former, information = "expected", uses the analytical expression of the information matrix. The
latter, information = "observed", uses the analytical expression of the Hessian as in a Newton-
Raphson procedure. The option information = "mix" uses a mixture of both expressions; in
simulations it performed similar to the information matrix, this option may be removed in future
versions of the package.

maxclik.fd.scoring maximizes the concentrated likelihood function. The parameter to be con-
centrated must be defined in the slot cpar of the input model m, see stsm. maxlik.fd.optim
detects whether cpar is defined in the input model. In the scoring algorithm, if m@cpar is not NULL
maxclik.fd.scoring should be used.

Bounds on parameters and barrier term. The lower and upper bounds within which the L-BFGS-B
algorithm conducts the search are taken from the slots lower and upper defined in the input object
m. As an alternative to the L-BFGS-B procedure, a barrier term can be passed as argument.

The barrier term is added to the likelihood function and acts as a penalization for parameter values
close to the bounds. For details about the barrier term see barrier.eval. In the scoring algorithm,
if step = NULL the procedure automatically searches the optimum step size that is compatible with
the bounds on the parameters. See step.maxsize and further details below.

Control parameters for the scoring algorithm. maxit, maximum number of iterations (the default
is 100); tol, tolerance to assess convergence of the algorithm (the default is 0.001); trace, logical,
if TRUE, the values of the parameters at each iteration of the procedure are stored and returned in a
matrix; silent, logical, if FALSE, a warning is printed if convergence is not achieved.

Choice of the step size in the scoring algorithm. If step is a numerical value, the step size is
fixed to that value at all iterations of the algorithm. Otherwise, the choice of the step size in the
scoring algorithm is made by means of a line search procedure specified in the argument ls. See
step.maxsize for a description of the elements that can be passed through the argument ls.

External regressors If external regressors are included in the model m, starting values for their
coefficients are obtained in a linear regression of the differenced series on the differenced regressors.
The values in the slot pars are therefore overwritten and not used as initial values.

Value

A list of class stsmFit with components:

call an object of class call specifying the arguments passed to the function.

init initial parameter values.

pars parameter values at the local optimum.

m the stsm model object updated with the optimal parameter values.

loglik the value of the log-likelihood function at the local optimum.

convergence convergence code returned by optim; for the scoring algorithm a logical indi-
cating whether convergence was achieved.

maxlik.fd 15

iter for maxlik.fd.optim it is a two-element vector with the number of calls made
by optim to the objective function and to the gradient; for maxlik.fd.scoring
it is the number of iterations employed by the scoring algorithm.

message an empty character or a character message giving some additional information
about the optimization process.

Mpars a matrix or NULL. If control$trace = TRUE in the scoring algorithm, the path
to the local optimum is traced storing by rows the parameter values at each
iteration.

steps a vector or NULL. If control$trace = TRUE in the scoring algorithm, the step
size used at each iteration is stored in this vector.

ls.iter a vector containing the number of iterations employed by the line search proce-
dure at each step of the scoring algorithm. It is NULL if ls$type = "optimize".

ls.counts a two-element vector containing the total number of calls to the objective func-
tion and the gradient made by the line search procedure in all the iterations. (It
is NULL if ls$type = "optimize".)

Note: if m@transPars is not NULL, the elements init and pars are in terms of the auxiliary set of
parameters. If the output is stored for example in an object called res, get.pars(res$model) will
return the actual variance parameters.

The version based on optim, maxlik.fd.optim, returns also the element hessian containing the
numerically differentiated Hessian matrix at the local optimum. Note that, if the model is parameter-
ized in terms of an auxiliary set of parameters and gradient = "numerical" is used, the Hessian
returned by optim is defined with respect to the auxiliary set of parameters, not the variances.

References

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press.

Nocedal, J. and Wright, J. W. (2006). Numerical Optimization. Springer-Verlag.

See Also

barrier.eval, mloglik.fd, stsm, optim.

Examples

fit the local level plus seasonal model to a
sample simulated series
further examples and options can be explored in the
script files 'sim-llmseas-ml-fd.R' and 'sim-llmseas-mcl-fd.R'
available in the 'inst' folder of the source package
data("llmseas")

initial parameters and 'stsm' model
initpars <- c(var1 = 1, var2 = 1, var3 = 1)
m <- stsm.model(model = "llm+seas", y = llmseas, pars = initpars)

Newton-Raphson algorithm (analytical Hessian)

16 maxlik.td

res1 <- maxlik.fd.scoring(m = m, step = NULL,
information = "observed", control = list(maxit = 100, tol = 0.001))

res1

Scoring algorithm (information matrix)
res2 <- maxlik.fd.scoring(m = m, step = NULL,

information = "expected", control = list(maxit = 100, tol = 0.001))
res2

wrapper function for 'optim()' in the 'stats' package
res3 <- maxlik.fd.optim(m, method = "L-BFGS-B", gr = "analytical")
res3

concentrating one of the parameters
the model must be first defined accordingly, here 'var1', i.e.,
the variance of the disturbance in the observation equation
is concentrated, its standard error is reported as 'NA'
mc <- stsm.model(model = "llm+seas", y = llmseas,

pars = initpars[-1], cpar = initpars[1])
res4 <- maxclik.fd.scoring(m = mc, step = NULL,

information = "observed", control = list(maxit = 100, tol = 0.001))
res4

maxlik.td Maximization of the Time Domain Likelihood Function

Description

Maximize the time domain log-likelihood function of a structural time series model by means of a
scoring algorithm or a general purpose optimization algorithm available in optim.

Usage

maxlik.td.optim(m,
KF.version = eval(formals(KFKSDS::KalmanFilter)$KF.version),
KF.args = list(), check.KF.args = TRUE,
barrier = list(type = c("1", "2"), mu = 0), inf = 99999,
method = c("BFGS", "L-BFGS-B", "Nelder-Mead", "CG", "SANN", "AB-NM"),
gr = c("numerical", "analytical"), optim.control = list())

maxlik.td.scoring(m, step = NULL,
KF.args = list(), check.KF.args = TRUE,
ls = list(type = "optimize", tol = .Machine$double.eps^0.25, cap = 1),
control = list(maxit = 100, tol = 0.001, trace = FALSE, silent = FALSE),
debug = FALSE)

maxlik.td 17

Arguments

m an object of class stsm.

KF.version character indicating the implementation of the Kalman filter to be used.

KF.args a list of parameters to be passed to the function chosen to run the Kalman filter.

check.KF.args logical. If TRUE, the arguments passed through KF.args are checked for consis-
tency with the interface chosen in KF.version: for maxlik.td.scoring in it is
checked for consistency with interface KFKSDS.

barrier a list defining a barrier term to penalize parameter values close to the bounds
m@lower and m@upper.

inf a numeric indicating the value to be returned if the value of the log-likelihood
function happens to be NA or non-finite at some iteration of the optimization
procedure.

method character indicating the method to be used by optim.

gr character indicating whether numerical or analytical derivatives should be used.

optim.control a list of control parameters passed to optim.

step if it is a numeric it stands for a fixed step size, otherwise an automatic procedure
is used to choose the step size.

ls control parameters for the line search procedure used to chose the step size in
the scoring algorithm.

control a list of control parameters for the scoring algorithm.

debug logical. If TRUE, tracing information is printed for debugging purposes of the
scoring algorithm.

Details

The function maxlik.td.optim implements the common procedure of maximum likelihood, i.e.,
maximization of the time domain likelihood function by means of a numerical optimization algo-
rithm (L-BFGS-B or other algorithms available in optim). The likelihood function is evaluated by
means of the Kalman filter.

The function maxlik.td.scoring implements a scoring algorithm based on the analytical expres-
sion of the information matrix of the time domain likelihood function.

López-de-Lacalle (2013) discusses several options and details that are often omitted or ignored
when maximizing the likelihood function of a structural time series models. The interface maxlik.td.optim
allows the user to choose some options that may affect the results or convergence of the algorithm.

A novelty compared to other implementations such as StructTS is that the optimization procedure
is enhanced by means of analytical derivatives. Another enhancement is that one of the parameters
can be concentrated out of the likelihood function. The parameter to be concentrated is defined
in the slot cpar of the input model m, see stsm. This option has not yet been implemented in the
scoring algorithm.

For details about the options than can be passed through argument KF.args see the documentation
of the same argument in function KalmanFilter in package KFKSDS.

For further information about the scoring algorithm see the following points in the details section of
maxlik.fd.scoring: Bounds on parameters and barrier term, Control parameters for the scoring
algorithm and Choice of the step size in the scoring algorithm.

18 maxlik.td

If external regressors are included in the model m, starting values for their coefficients are obtained
in a linear regression of the differenced series on the differenced regressors. The values in the slot
pars are therefore overwritten and not used as initial values.

Note: ls$type = "wolfe" is not implemented for maxlik.td.scoring.

Value

A list of class stsmFit. See the section ‘Value’ in maxlik.fd.

References

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods. Oxford
University Press.

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press.

López-de-Lacalle, J. (2013). ‘101 Variations on a Maximum Likelihood Procedure for a Structural
Time Series Model.’ Unpublished manuscript.

Nocedal, J. and Wright, J. W. (2006). Numerical Optimization. Springer-Verlag.

See Also

barrier.eval, mloglik.td, stsm, optim.

Examples

replicate maximum likelihood procedure as implemented in 'stats::StructTS'
res0 <- stats::StructTS(log(AirPassengers), type = "BSM")
mairp <- stsm.model(model = "BSM", y = log(AirPassengers),

transPars = "StructTS")
res1 <- maxlik.td.optim(mairp, KF.version = "KFKSDS",

KF.args = list(P0cov = TRUE), method = "L-BFGS-B", gr = "numerical")
mairp1 <- set.pars(mairp, pmax(res1$par, .Machine$double.eps))
round(get.pars(mairp1), 6)
all.equal(get.pars(mairp1), res0$coef[c(4,1:3)],

tol = 1e-04, check.attributes = FALSE)

smoothed components
ss1 <- char2numeric(mairp1, P0cov = TRUE)
kf1 <- KFKSDS::KF(mairp1@y, ss1)
ks1 <- KFKSDS::KS(mairp1@y, ss1, kf1)
plot(tsSmooth(res0)[,c(1,3)])
plot(ks1$ahat[,c(1,3)])

the scoring algorithm reaches another local optimum where
the seasonal component is more homoscedastic
mairp <- stsm.model(model = "BSM", y = log(AirPassengers),

transPars = NULL)
res2 <- maxlik.td.scoring(mairp, step = NULL,

ls = list(type = "optimize", tol = .Machine$double.eps^0.25, cap = 1),
control = list(maxit = 100, tol = 0.001, trace = FALSE), debug = FALSE)

method-logLik 19

round(res2$par, 6)

mairp2 <- set.pars(mairp, res2$par)
ss2 <- char2numeric(mairp2, P0cov = FALSE)
kf2 <- KFKSDS::KF(mairp2@y, ss2)
ks2 <- KFKSDS::KS(mairp2@y, ss2, kf2)
plot(ks2$ahat[,c(1,3)])

method-logLik Extract Log-Likelihood

Description

This method returns the log-likelihood value of a model defined in a stsm object.

Usage

S3 method for class 'stsm'
logLik(object, domain = c("frequency", "time"), xreg = NULL,
td.args = list(P0cov = FALSE, t0 = 1,
KF.version = eval(formals(KFKSDS::KalmanFilter)$KF.version)),

check.td.args = TRUE,
barrier = list(type = c("1", "2"), mu = 0),
inf = 99999, ...)

Arguments

object an object of class stsm.

domain a character indicating whether the time domain or the spectral likelihood should
be evaluated.

xreg optional matrix of external regressors with the same number of rows as the
length of the input time series m@y.

td.args a list containing arguments to be passed to mloglik.td. Only for domain = "time".

check.td.args logical. If TRUE, argument td.args is checked for consistency with td.args$KF.version.
Only for domain = "time".

barrier a list defining a barrier term to penalize parameter values close to the bounds
m@lower and m@upper.

inf a numeric indicating the value to be returned if the value of the log-likelihood
function happens to be NA or non-finite.

... additional arguments. Currently ignored.

Value

An object of class logLik containing the value of the log-likelihood function for the given model
and the attribute df, the number of estimated parameters.

20 methods-stsmFit

See Also

mloglik.fd, mloglik.td, mle, KalmanFilter, stsm.

methods-stsmFit Methods to Extract Information from a Fitted stsm Model Object

Description

Common methods to print and display results for an object of class stsm or stsmFit returned by
functions maxlik.fd and maxlik.fd.

Usage

S3 method for class 'stsmFit'
coef(object, ...)
S3 method for class 'stsmFit'
print(x, digits = max(3L, getOption("digits") - 3L),
vcov.type = c("hessian", "infomat", "OPG", "sandwich", "optimHessian"), ...)

S3 method for class 'stsmFit'
fitted(object, std.rediduals = TRUE, version = c("KFKSDS", "stats"), ...)
S3 method for class 'stsmFit'
residuals(object, standardised = FALSE, version = c("KFKSDS", "stats"), ...)
S3 method for class 'stsmComponents'
plot(x, ...)
S3 method for class 'stsm'
predict(object, n.ahead = 1L, se.fit = TRUE,
version = c("KFKSDS", "stats"), ...)

S3 method for class 'stsmFit'
predict(object, n.ahead = 1L, se.fit = TRUE,
version = c("KFKSDS", "stats"), ...)

S3 method for class 'stsmPredict'
plot(x, ...)
S3 method for class 'stsm'
tsSmooth(object, version = c("KFKSDS", "stats"), ...)
S3 method for class 'stsmFit'
tsSmooth(object, version = c("KFKSDS", "stats"), ...)
S3 method for class 'stsmSmooth'
plot(x, ...)
S3 method for class 'stsmFit'
tsdiag(object, gof.lag = 10L, ...)

Arguments

object an object of class stsm or a stsmFit list.

x a stsmFit list. For plot methods it is a list of class stsmComponents, stsmPredict
or stsmSmooth.

methods-stsmFit 21

digits minimal number of significant digits, see print.default.

vcov.type a character indicating the type of covariance matrix to be used to compute the
standard errors of the parameter estimates.

version a character indicating whether the Kalman filter and smoother functions from
package KFKSDS or from the stats package should be used.

std.rediduals logical. If TRUE residuals are standardised.

standardised logical. If TRUE standardised are returned.

n.ahead a numeric, number of observations ahead to perform prediction.

se.fit logical. If TRUE standard errors of the predictions are returned.

gof.lag numeric, number of lag autocorrelation coefficients to which apply the Box test.

type A character. Type of information used to compute the covariance matrix of the
parameters of the fitted model: information matrix, Hessian or a mixture of
them.

... additional arguments to be passed to the functions called in these methods.

Details

These methods are based on those with the same name available for the output returned by StructTS
in the stats package.

These methods are originally intended to provide summary information from a model fitted by max-
imum likelihood. Thus, the most natural input for them is a stsmFit list returned by maxlik.fd
and maxlik.td. Nevertheless, as the information and the data required by these methods are avail-
able in the slots of a stsm object, they can also be applied directly on an object of class stsm. This
can be useful, for example, when we know a set of parameter estimates that was obtained from a
method other than maxlik.fd or maxlik.td. By simply updating the slot pars of the stsm object,
the residuals and the filtered and smoothed components are readily available through these methods.

In most cases, the ellipsis, ..., is kept in the definitions of the methods just because it is part
of the parent method. It has some functionality nonetheless. For the methods fitted.stsm and
predict.stsm it can be used to pass argument P0cov to function char2numeric. It can also be
used to pass graphical parameters to par in method plot.stsmComponents and plot.stsmSmooth
or to plot in plot.stsmPredict and plot.stsmSmooth.

By default in method fitted, std.rediduals = TRUE so that it behaves as in previous ver-
sions of the package where this argument was not available. In method rediduals, by default
standardised = FALSE because it is more convenient when used in package tsoutliers (this argu-
ment does not need to be explicitly defined and hence the method residuals is used in the same way
both on arima models and for stsm).

Value

The following information is returned by these methods:

coef.stsmFit, print.stsmFit

optimal parameter values.
fitted.stsm, fitted.stsmFit

an list of class stsmComponents containing the filtered components and residu-
als.

22 methods-vcov-confint

residuals.stsmFit

residuals in the fitted model.
plot.stsmComponents

plot of the filtered components.
predict.stsm, predict.stsmFit

predictions of the input time series and standard errors.
plot.stsmPredict

plot of the predictions.
tsSmooth.stsm, tsSmooth.stsmFit

smoothed components.
plot.stsmSmooth

plot of the smoothed components.
tsdiag.stsm, tsdiag.stsmFit

plot of diagnostic tests.

See Also

confint.stsmFit, maxlik.fd, maxlik.td, vcov.stsmFit, stsm.

Examples

fit the local level plus seasonal model to a
sample simulated series
data("llmseas")
m <- stsm.model(model = "llm+seas", y = llmseas)
res <- maxlik.fd.scoring(m = m, step = NULL,

information = "expected", control = list(maxit = 100, tol = 0.001))
print(res)

#diagnostic
tsdiag(res)

display estimated components with 95% confidence bands
comps <- tsSmooth(res)
plot(comps)
title(main = "smoothed trend and seasonal components")

plot predictions eight periods ahead
pred <- predict(res, n.ahead = 8, se.fit = TRUE)
plot(pred)

methods-vcov-confint Variance-covariance Matrix for a Fitted stsm Model Object

Description

The method vcov computes the variance-covariance matrix of the parameters fitted in a structural
time series model. This matrix is used to compute confidence intervals for those parameters returned
by the coef.stsmFit method.

methods-vcov-confint 23

Usage

S3 method for class 'stsmFit'
vcov(object,
type = c("hessian", "infomat", "OPG", "sandwich", "optimHessian"), ...)

S3 method for class 'stsm'
vcov(object,
type = c("hessian", "infomat", "OPG", "sandwich"),
domain = c("frequency", "time"), ...)

S3 method for class 'stsmFit'
confint(object, parm, level = 0.95,
type = c("vcov", "bootstrap"),
vcov.type = c("hessian", "infomat", "OPG", "sandwich", "optimHessian"),
breps = 100, ...)

Arguments

object a stsmFit list or object of class stsm.

type a character. In vcov, it is the type of covariance matrix. In confit, it is the
type of confidence intervals: based on the covariance matrix of the estimated
parameters or on a bootstrap procedure.

domain a character indicating whether the covariance matrix is obtained upon the fre-
quency or time domain likelihood function.

parm character indicating the name of the parameter on to obtain the confidence inter-
val. If missing, all parameters are considered.

level the confidence level.

vcov.type a character indicating the type of covariance matrix. Ignored if type = "bootstrap".

breps number of bootstrap replicates. Ignored if type "vcov".

... additional arguments to be passed to the functions called in these methods. Cur-
rently ignored.

Details

The following estimators of the covariance matrix of parameter estimates are available (Davidson
and MacKinnon (2004), Section 10.4):

• hessian: the inverse of the analytical Hessian.

• infomat: the inverse of the analytical expression for the information matrix.

• OPG: the inverse of the outer product of the analytical gradient. Also known as the BHHH
estimator since it was proposed by Berndt, Hall, Hall and Hausman (1974). This method
requires only first order derivatives. It tends to be less reliable in small samples.

• sandwich: the sandwich estimator defined as: H−1(G′G)H−1,whereG is the gradient vector
and H is the Hessian matrix. It requires more computations and may be unreliable in small
samples. However, contrary to the previous methods, it is valid when the information matrix
equality does not hold for example due to misspecification of the model.

• optimHessian: the inverse of the numerical Hessian returned by optim.

24 methods-vcov-confint

The natural input for the method method vcov is a stsmFit list returned by maxlik.fd or maxlik.td.
However, vcov can be also applied directly on a stsm model object. This is useful for example
when maximum likelihood parameter estimates are found by means of optim using the functions
maxlik.fd.optim or maxlik.fd.optim. In that case, only the covariance matrix based on the nu-
merical Hessian returned by optim would be available. Updating the slot pars of a stsm model
object with the parameter values obtained from other algorithm is a convenient solution to obtain
the covariance matrix based on other methods available in vcov.stsmFit.

For the time domain likelihood function the covariance matrix of the initial state vector is considered
diagonal, P0cov = FALSE.

The analytical Hessian for the time domain version is not available, the information matrix is used
instead.

By default, vcov.type = "infomat" for the time domain likelihood function and vcov.type = "hessian"
for the frequency domain likelihood function.

Confidence intervals can either be computed upon the covariance matrix of the parameter estimates
(type = "vcov") or by means of bootstrapping (type = "bootstrap"). The bootstrap approach
takes advantage of the following result (Harvey (1989) eq. (4.3.25)):

4πI(λj)/g(λj) ∼ χ2
2, for j 6= 0, n/2 (for n even)

2πI(λj)/g(λj) ∼ χ2
1, for j = 0, n/2 (for n even)

where I(λj) and g(λj) are respectively the periodogram and the spectral generating function at fre-
quency λj . Upon this result, bootstrap replicates of the periodogram are generated and for each of
them parameter estimates are obtained maximizing the spectral likelihood function. The quantiles
of the bootstrapped parameter estimates are the confidence interval. Dahlhaus and Janas (1996)
studied the properties of the frequency domain bootstrap which has been applied, among others, in
Koopman and Wong (2006). An advantage of the bootstrap method is that it yields confidence inter-
vals within the bounds of the parameters, i.e., positive variances. This procedure is computationally
intensive and requires some time to run, especially for large breps.

Value
vcov.stsm, vcov.stsmFit

return the covariance matrix of the parameters of the model.
confint.stsmFit

returns a matrix containing confidence intervals for the parameters of the model.

References

Berndt, E. R., Hall, B. H., Hall, R. E. and Hausman, J. A. (1974). ‘Estimation and inference in
nonlinear structural models’. Annals of Economic and Social Measurement, 3, pp. 653-65.

Dahlhaus, R. and Janas, D. (1996). ‘A Frequency Domain Bootstrap for Ratio Statistics in Time
Series Analysis’. Annals of Statistics, 24(5), pp. 1934-1963.

Davidson, R. and MacKinnon, J. G. (2004). Section 10.4. Econometric Theory and Methods.
Oxford University Press.

Koopman, S. J. and Wong, S. Y. (2006). ‘Extracting Business Cycles using Semi-Parametric Time-
varying Spectra with Applications to US Macroeconomic Time Series’. Tinbergen Institute Discus-
sion Papers, No. 2006-105/4. http://papers.tinbergen.nl/06105.pdf

http://papers.tinbergen.nl/06105.pdf

mloglik.fd 25

See Also

maxlik.fd, maxlik.td, methods-stsmFit, stsm.

Examples

Not run:
data("llmseas")
fit the local level plus seasonal model with default arguments
using the Newton-Raphson algorithm
m <- stsm.model(model = "llm+seas", y = llmseas)
res <- maxlik.fd.scoring(m = m, information = "observed")
coef(res)
confidence intervals for parameter estimates ...
... based on the covariance matrix of parameter estimates
gives a warning since the lower limit of the confidence interval
for parameter 'var2' was forced to be non-negative (fixed to 0)
civcov <- confint(res, type = "vcov", vcov.type = "hessian")
civcov
... based on bootstrapping the periodogram
NOTE: this will take a while to run
set.seed(643)
ciboot <- confint(res, type = "bootstrap", breps = 100)
ciboot

End(Not run)

mloglik.fd Spectral Log-Likelihood Function and Derivatives

Description

These functions evaluate the negative of the spectral log-likelihood function of a linear Gaussian
state space model and its first and second order derivatives.

Usage

mloglik.fd(x, model,
barrier = list(type = c("1", "2"), mu = 0), inf = 99999, xreg)

mcloglik.fd(x, model, xreg = NULL,
barrier = list(type = c("1", "2"), mu = 0), inf = 99999)

mloglik.fd.deriv(model, xreg = NULL,
gradient = TRUE, hessian = TRUE, infomat = TRUE, modcovgrad = TRUE,
barrier = list(type = c("1", "2"), mu = 0),
version = c("2", "1"))

mcloglik.fd.deriv(model, xreg = NULL,

26 mloglik.fd

gradient = TRUE, hessian = TRUE, infomat = TRUE)

mloglik.fd.grad(x, model, xreg = NULL,
barrier = list(type = c("1", "2"), mu = 0),
inf)

mcloglik.fd.grad(x, model, xreg = NULL, inf, barrier)

Arguments

x a numeric vector containing the parameters of the model. This is an auxiliary
argument so that this function can be used as input to optim.

model an object of class stsm.

xreg optional list containing constant terms. See details.

barrier a list defining a barrier term to penalize parameter values close to the bounds
m@lower and m@upper.

inf a numeric indicating the value to be returned if the value of the log-likelihood
function happens to be NA or non-finite.

gradient logical. If TRUE, first order derivatives of the negative of the spectral log-likelihood
function are returned.

hessian logical. If TRUE, second order derivatives of the negative of the spectral log-
likelihood function are returned.

infomat logical. If TRUE, the information matrix of the spectral log-likelihood are re-
turned.

modcovgrad logical. If TRUE, a mixture of the analytical expressions for the Hessian and the
outer product of the gradient is used. This option is experimental and may be
removed in future versions of the package.

version a character indicating whether implementation "2" or "2" (the default) should
be used.They yield the same result but are kept for debugging and comparison
of timings. This argument may be removed in future versions.

Details

The spectral log-likelihood of a linear Gaussian state space model is given by (Harvery, 1989 Sec-
tion 4.3):

logLik = −0.5log(2π)− 0.5

n−1∑
j=0

log g(λ[j])− π
n−1∑
j=0

I(λ[j])/g(λ[j])

where λ[j] is a frequency defined as λ[j] = 2πj/n; I(λ[j]) is the periodogram at frequency λ[j]
and g(λ[j]) is the spectral generating function of the model at frequency λ[j].

The derivation of the spectral likelihood function defined above relies on the assumption that the
process is circular (its covariance matrix is circulant). If the process is not circular the value of the
likelihood is an approximation.

mloglik.fd 27

First and second order derivatives are computed by means of their analytical expressions. The first
order derivatives of the spectral log-likelihood with respect to parameter θ are given by:

(d logLik)/(d θ) = 0.5

n−1∑
j=0

((2πI(λ[j]))/(g(λ[j]))− 1)(1/g(λ[j]))dg(λ[j])/dθ

Second order derivatives are given by:

(d2 logLik)(d θθ′) =

n−1∑
j=0

((2πI(λ[j]))/(g(λ[j]))− 1)1/(2g(λ[j]))(d2g(λ[j]))/(dθdθ′)−

2

n−1∑
j=0

((4πI(λ[j]))(g(λ[j]))− 1)(
1

2g(λ[j])
)2(dg(λ[j]))/(dθ)(dg(λ[j]))/(dθ′)

The argument x is an auxiliary vector that is necessary in some contexts. For example, the input
to function optim must contain as first argument the vector of parameters where optimization is
performed. If it is not required or is redundant information contained in model@pars it can be set
to NULL.

The functions mcloglik.fd, mcloglik.fd.deriv and mcloglik.fd.grad use the expressions for
the spectral log-likelihood function where the parameter specified in model@cpar is concentrated
out of the likelihood function.

For further information about the barrier term see Bounds on parameters and barrier term in the
details section in maxlik.fd.scoring.

Arguments inf and barrier are not used by mloglik.fd.grad and mcloglik.fd.grad but they
are needed in maxlik.fd.optim, where this function is passed as the gradient to be used by optim
including the arguments inf and barrier.

Argument xreg. It is an optional list of constant terms. It is used by maxlik.fd.optim when an-
alytical derivatives are employed and by maxlik.fd.scoring. It avoids computing some constant
terms each time the function mloglik.fd.grad is called.

The list xreg should contain an element called dxreg, the external regressors differeneced by means
of the differencing filter that renders stationarity in the model and the element fft.xreg, the Fourier
transform of each regressor in dxreg.

The list xreg is not used by mloglik.fd. It is necessary to define this argument in the prototype
of the function because when this function is passed to optim along with mloglik.fd.grad, the
argument xreg is passed to mloglik.fd when it is defined in optim as an argument to be passed to
mloglik.fd.grad.

Argument xreg is not currently implemented in functions with concentration of a parameter, mloglik.fd,
mcloglik.fd.deriv and mcloglik.fd.grad.

Note: modcovgrad is not available when external regressors are defined in the input model, model.

Value

mloglik.fd returns a numeric value of the negative of the spectral log-likelihood evaluated at the
parameter values defined in the input model model or at x if this argument is not NULL. If the value

28 mloglik.fd

happens to be NA or non-finite the value of argument inf is returned. This function is suited to be
passed as the objective function to optim.

mloglik.fd.deriv returns a list containing a vector of the first order derivatives of the negative of
the spectral likelihood and a matrix for the second order derivatives. Those derivative terms that are
not requested by setting the corresponding argument to FALSE are set to NULL in the output list.

mloglik.fd.grad returns a numeric vector containing the gradient. This function is suited to be
passed as the gradient function to optim.

mcloglik.fd, mcloglik.fd.deriv and mcloglik.fd.grad return the value of the same informa-
tion as the other functions but for the concentrated likelihood function.

Note

mcloglik.fd.deriv is not currently implemented for model with non-null model@transPars or
with a barrier term.

References

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press.

See Also

barrier.eval, logLik, maxlik.fd, stsm.

Examples

define the local level model for Nile time series
pars <- c("var1" = 11000, "var2" = 1700)
m <- stsm.model(model = "local-level", y = Nile, pars = pars)
'mloglik.fd' returns the negative of the log-likelihood function
mloglik.fd(model = m)
'logLik' returns the value of the log-likelihood function
logLik(object = m, domain = "frequency")

compare analytical and numerical derivatives
more tests in file 'test-derivatives-mloglik-fd.R' in the
folder 'inst' of the source package
system.time(da <- mloglik.fd.deriv(m, gradient = TRUE, hessian = TRUE))
dgn <- numDeriv::grad(func = mloglik.fd, x = m@pars, model = m)
dhn <- numDeriv::hessian(func = mloglik.fd, x = m@pars, model = m)
all.equal(as.vector(da$gradient), dgn)
all.equal(da$hessian, dhn)

the same as above for the local level plus seasonal model and
a sample simulated series
data("llmseas")
m <- stsm.model(model = "llm+seas", y = llmseas)
system.time(a <- mloglik.fd.deriv(model = m, gradient = TRUE, hessian = TRUE))
system.time(g <- numDeriv::grad(func = mloglik.fd, x = m@pars, model = m))
system.time(h <- numDeriv::hessian(func = mloglik.fd, x = m@pars, model = m))

mloglik.td 29

all.equal(a$gradient, g, check.attributes = FALSE)
all.equal(a$hessian, h, check.attributes = FALSE)

mloglik.td Time Domain Log-Likelihood Function and Derivatives

Description

This function evaluates the negative of the time domain log-likelihood function of a linear Gaussian
state space model by means of the Kalman filter.

Usage

mloglik.td(x, model,
KF.version = eval(formals(KFKSDS::KalmanFilter)$KF.version),
KF.args = list(), check.KF.args = TRUE,
barrier = list(type = c("1", "2"), mu = 0), inf = 99999)

KFconvar(model, P0cov = FALSE, barrier = list(type = "1", mu = 0), debug = TRUE)

mloglik.td.deriv(model, gradient = TRUE, infomat = TRUE,
KF.args = list(), version = c("1", "2"), kfres = NULL,
convergence = c(0.001, length(model@y)))

mloglik.td.grad(x, model, KF.version, KF.args = list(),
convergence = c(0.001, length(model@y)),
check.KF.args, barrier, inf)

Arguments

x a numeric vector containing the parameters of the model. This is an auxiliary
argument so that this function can be used as input to optim.

model an object of class stsm.

KF.version character indicating the implementation of the Kalman filter to be used.

KF.args a list of parameters to be passed to the function chosen to run the Kalman filter.

check.KF.args logical. If TRUE, the elements passed in argument KF.args are checked for con-
sistency with KF.version.

barrier a list defining a barrier term to penalize parameter values close to the bounds
m@lower and m@upper.

inf a numeric indicating the value to be returned if the value of the log-likelihood
function happens to be NA or non-finite.

P0cov logical. If TRUE, values outside the diagonal of the covariance matrix of the ini-
tial state vector are set equal to the values in the diagonal, as done in StructTS.

debug logical. If TRUE, the correctness of the result is double-checked.

30 mloglik.td

gradient logical. If TRUE, first order derivatives of the negative of the spectral log-likelihood
function are returned.

infomat logical. If TRUE, the information matrix of the spectral log-likelihood are re-
turned.

version a character indicating whether implementation "2" or "2" (the default) should
be used.They yield the same result but are kept for debugging and comparison
of timings. This argument may be removed in future versions.

kfres optional list containing the elements involved in the Kalman filter as returned by
KF.deriv.

convergence a numeric vector containing two parameters to control the convergence of the
Kalman filter. See KF.

Details

The general univariate linear Gaussian state space model is defined as follows:

y[t] = Za[t] + e[t], e[t] ∼ N(0, H)

a[t+ 1] = Ta[t] +Rw[t], w[t] ∼ N(0, V)

for t = 1, . . . , n and a[1] ∼ N(a0, P0). Z is a matrix of dimension 1×m; H is 1×1; T is m×m;
R is m× r; V is r× r; a0 is m×1 and P0 is m×m, where r is the number of variance parameters
in the state vector.

The Kalman filtering recursions for the model above are:

Prediction
a[t] = Ta[t− 1]

P [t] = TP [t− 1]T ′ +RV R′

v[t] = y[t]− Za[t]

F [t] = ZP [t]Z ′ +H

Updating
K[t] = P [t]Z ′F [t]−1

a[t] = a[t] +K[t]v[t]

P [t] = P [t]−K[t]ZP [t]′

for t = 2, . . . , n, starting with a[1] and P [1] equal to a0 and P0. v[t] is the prediction error at
observation in time t and F [t] is the variance of v[t].

The log-likelihood of the model for a given set of parameter values is:

logLik = −0.5log(2π)− 0.5

n∑
t=1

logF [t] + v[t]2/F [t]

For details about the options than can be passed through argument KF.args see the documentation
of the same argument of function KalmanFilter in package KFKSDS. For mloglik.td.deriv,

mloglik.td 31

the only element that is used if provided in KF.args is P0cov (a logical indicating whether the
covariance matrix of the initial state vector diagonal or not).

The argument x is an auxiliary vector that is necessary in some contexts. For example, the input
to function optim must contain as first argument the vector of parameters where optimization is
performed. If it is not required or is redundant information contained in model@pars it can be set
to NULL.

For further information about the barrier term see Bounds on parameters and barrier term in the
details section in maxlik.fd.scoring.

KFconvar evaluates the concentrated likelihood function. The likelihood is concentrated with re-
spect to the parameter defined in model@cpar. The optimal value of the parameter that is concen-
trated out of the likelihood is:

s2 = (1/n)

n∑
t=1

v[t]/F [t]

and the concentrated likelihood function is given by:

clogLik = (n/2)log(2π + 1) + 0.5

n∑
t=1

log(f [t]) + (n/2)log(s2).

The gradient and the information matrix are calculated upon their corresponding analytical expres-
sions.

Arguments KF.version, check.KF.args, barrier and inf are not used by mloglik.td.grad but
they are needed in maxlik.td.optim, where this function is passed as the gradient to be used by
optim including the arguments inf and barrier.

Value

The minus log-likelihood function evaluated at the parameter values defined in the input model
model or at x if this argument is not NULL. If the value happens to be NA or non-finite the value of
argument inf is returned. This function is suited to be passed as the objective function to optim.

KFconvar returns a list containing the element mll, the negative of the concentrated minus log-
likelihood function and the element cpar, the optimal value of the parameter that is concentrated
out of the likelihood.

mloglik.td.deriv returns a list containing a vector of the first order derivatives of the negative of
the time domain likelihood function and a matrix for the information matrix. They are set to NULL
if any of them are not requested.

mloglik.td.grad returns a numeric vector containing the gradient. This function is suited to be
passed as the gradient function to optim.

References

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods. Oxford
University Press.

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press.

32 sim-data

See Also

barrier.eval, logLik, maxlik.td, stsm, KalmanFilter, KalmanLike.

Examples

local level plus seasonal model for a sample simulated series
data("llmseas")
m <- stsm.model(model = "llm+seas", y = llmseas,

pars = c("var1" = 300, "var2" = 10, "var3" = 100))
evaluate the time domain likelihood function using
excluding the contributions of the first 8 observations
mloglik.td(model = m, KF.version = "KFKSDS", KF.args = list(t0 = 9))

compare analytical and numerical derivatives
identical gradient up to a tolerance
a <- mloglik.td.deriv(m, infomat = TRUE)
g <- numDeriv::grad(func = mloglik.td, x = m@pars,

model = m, KF.version = "KFKSDS")
h <- numDeriv::hessian(func = mloglik.td, x = m@pars,

model = m, KF.version = "KFKSDS")
all.equal(a$gradient, g, check.attributes = FALSE)

sim-data Simulated Data

Description

Time series simulated from the local level plus seasonal model.

Usage

llmseas

Format

A time series of length 120.

Source

The scripts to generate this and other series used in the vignette are stored in the files ‘stsm/inst/datagen-llm.R’
and ‘stsm/inst/datagen-llmseas.R’. The first series returned by the latter script is the series that
is loaded by data("llmseas").

stsm-char2numeric-methods 33

stsm-char2numeric-methods

State Space Representation of Objects of Class stsm

Description

This method returns the state space representation of time series models defined in the class stsm.

Usage

S4 method for signature 'stsm'
char2numeric(x, P0cov = FALSE, rescale = FALSE)

Arguments

x an object of class stsm.

P0cov logical. If TRUE the values of the elements outside the diagonal in the initial
covariance matrix of the state vector are set equal to the values in the diagonal.
Otherwise values outside the diagonal are set equal to zero.

rescale logical. If TRUE, relative variance parameters are rescaled into absolute vari-
ances. Otherwise, relative variances are used. Ignored if x@cpar is null.

Details

This method uses the information from the slots pars, nopars and cpar in order to build the nu-
meric representation of the matrices.

For details about the argument rescale see the details section in stsm-get-methods and the ex-
amples below.

A previous version of this method employed the information in the slot ss. This slot contains the
matrices of the state space form of the model but instead of inserting the parameter values, character
strings indicating the location of the parameters are placed in the corresponding cells. This method
performed the mapping from the character to the numeric matrices by means of a internal function
called ss.fill. Currently the slot ss and the matrices are directly built depending on the model that
was selected among those available in stsm.model. The current approach is straightforward and
faster. The previous approach may still be interesting to allow the user to define additional models
just by translating the notation of the model into character matrices. The usefulness of enhancing
this approach will be assessed in future versions of the package.

Value

A list of class stsmSS containing the following numeric matrices and vectors:

Z observation matrix.

T transition matrix.

H observation variance.

34 stsm-char2numeric-methods

R selection matrix.

V state vector variance-covariance matrix.

Q RVR’.

a0 initial state vector.

P0 initial state vector uncertainty matrix.

The list contains also two vectors, Vid and Qid, with the indices of those cells where the variance
parameters are located respectively in the matrices V andQ. The first element in a matrix is indexed
as 0.

State space representation

The general univariate linear Gaussian state space model is defined as follows:

y[t] = Za[t] + e[t], e[t] ∼ N(0, H)

a[t+ 1] = Ta[t] +Rw[t], w[t] ∼ N(0, V)

for t = 1, . . . , n and a[1] ∼ N(a0, P0). Z is a matrix of dimension 1×m; H is 1×1; T ism×m;
R is m× r; V is r× r; a0 is m× 1 and P0 is m×m, where m is the dimension of the state vector
a and r is the number of variance parameters in the state vector.

See Also

stsm, stsm.model.

Examples

sample model with arbitrary parameter values
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var1" = 2, "var2" = 6), nopars = c("var3" = 12))
ss1 <- char2numeric(m)
c(get.pars(m), get.nopars(m), get.cpar(m))
character notation of the covariance matrix of the state vector
m@ss$Q
information from the slots 'pars', 'nopars' and 'cpar'
is used to retrieve the numeric representation of 'm@ss$Q'
ss1$Q

same as above but with P0cov=TRUE
the only change is in the initial covariance matrix of
the state vector 'P0'
ss2 <- char2numeric(m, P0cov = TRUE)
ss1$P0
ss2$P0

if a non-standard parameterization is used,
the values in the slot 'pars' are transformed accordingly
and the actual variance parameters are returned;
notice that the transformation of parameters applies only
to the parameters defined in the slot 'pars'

stsm-class 35

m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,
pars = c("var1" = 2, "var2" = 6), nopars = c("var3" = 12),
transPars = "square")

c(get.pars(m), get.nopars(m), get.cpar(m))[1:3]
ss <- char2numeric(m)
ss$H
ss$Q

model defined in terms of relative variances,
the variances in 'pars' are relative to the scaling parameter 'cpar',
in this example 'cpar' is chosen to be the variance 'var1'
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var2" = 3, "var3" = 6), cpar = c("var1" = 2),
transPars = NULL)

the state space representation can be done with
relative variances (no rescaling)
ss <- char2numeric(m, rescale = FALSE)
ss$H
ss$Q
or with absolute variances (rescaling)
ss <- char2numeric(m, rescale = TRUE)
ss$H
ss$Q

in a model where the parameters are the relative variances
and with non-null 'transPars', the transformation is applied to
the relative variances, not to the absolute variances, i.e.,
the relative variances are first transformed and afterwards they are
rescaled back to absolute variances if requested
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var2" = 3, "var3" = 6), cpar = c("var1" = 2),
transPars = "square")

the state space representation can be done with
relative variances (no rescaling)
ss <- char2numeric(m, rescale = FALSE)
ss$H
ss$Q
or with absolute variances (rescaling)
ss <- char2numeric(m, rescale = TRUE)
ss$H
ss$Q

stsm-class Class stsm for Structural Time Series Models

Description

This class defines a structural time series model.

36 stsm-class

Slots

call Object of class call. Call to stsm.model.

model Object of class character. Name or label for the selected model (see stsm.model for
available models).

y Object of class ts. Original time series.

diffy Object of class ts. Differenced series y. The differencing operator that renders stationarity
in the model is applied to the series y.

xreg An optinal matrix or numeric vector of external regressors.

fdiff Object of class function. Function with arguments x: a ts object, s: periodicity of the
data. This function applies the differencing operator that renders stationarity in the model to a
ts object passed to it.

ss Object of class list. Matrices of the state space form of the structural model.

pars Object of class numeric. Named vector with the parameters of the model.

nopars Optional object of class numeric. An optional named vector with the remaining param-
eters of the model not included in pars. This slot is not affected by the transformation of
parameters transPars. These parameters are considered fixed in the optimization procedures
implemented in package stsm.

cpar Optional object of class numeric. Named vector of length one containing the parameter that
is concentrated out of the likelihood function (if any).

lower Object of class numeric. Named vector with the lower bounds for pars.

upper Object of class numeric. Named vector with the upper bounds for pars.

transPars Character string referring to the parameterization of the model, see transPars.

ssd Optional object of class numeric. Sample spectral density (periodogram) of the differenced
series diffy.

sgfc Optional object of class matrix. Constant elements in the spectral generating function of the
model (for pure variance models).

Methods

char2numeric Return a list containing the matrices of the state space representation of the model.
The matrices are the same as those in the slot ss but the characters are replaced by the corre-
sponding numeric values defined in pars, nopars and cpar.

checkbounds Check whether the values of pars lie within the lower and upper bounds.

get.pars Return the slot pars, the parameters of the model. If the model is parameterized in terms
of a set of auxiliary parameters such as those considered in transPars, then the transformed
parameters are returned. Thus, when the slot transPars is not NULL x@pars will not be equal
to get.pars(x).

get.cpar Return the slot cpar.

get.nopars Return the slot nopars.

set.cpar Set or modify the value of the slot cpar

set.nopars Set or modify the value of the slot nopars.

set.pars Set or modify the value of the slot pars.

stsm-get-methods 37

set.sgfc Compute and set the value of the slot sgfc.

set.xreg Set or modify the value of the slot xreg.

setValidity Check the validity of the arguments passed to the function.

show Show a brief summary of the object.

transPars Transform the parameters of the model according to the parameterization defined in the
slot transPars.

References

Christophe Genolini. A (Not So) Short Introduction to S4. Object Oriented Programming in R.
V0.5.1. August 20, 2008.

See Also

stsm.model.

stsm-get-methods Getter Methods for Class stsm

Description

Get access to the information stored in the slots cpar, nopars and pars in objects of class stsm.

Usage

S4 method for signature 'stsm'
get.cpar(x, rescale = FALSE)
S4 method for signature 'stsm'
get.nopars(x, rescale = FALSE)
S4 method for signature 'stsm'
get.pars(x, rescale = FALSE, gradient = FALSE)

Arguments

x an object of class stsm.

rescale logical. If TRUE, relative variance parameters are rescaled into absolute vari-
ances. Ignored if x@cpar is null.

gradient logical. If TRUE, first order derivatives of transPars with respect to the param-
eters in the slot pars are returned.

38 stsm-get-methods

Details

Transformation of the parameters of the model. The method transPars allows parameterizing the
model in terms of an auxiliary vector of parameters. The output of get.pars is returned in terms
of the actual parameters of the model, i.e., the variances and the autoregressive coefficients if they
are part of the model. With the standard parameterization, x@transPars = NULL, get.pars(x)
returns the output stored in x@pars. When the model is parameterized in terms of an auxiliary set
of parameters θ, get.pars return the variance parameters instead of the values of θ that are stored
in x@pars. For example, with x@transPars = "square" (where the variances are θ2), ger.pars
returns θ2 while x@pars contains the vector θ.

Absolute and relative variances.

The model can be defined in terms of relative variances. In this case, the variance that acts as
a scaling parameter is stored in the slot cpar. Otherwise, cpar is null and ignored. Typically,
the scaling parameter will be chosen to be the variance parameter that is concentrated out of the
likelihood function.

If rescale = TRUE, the relative variance parameters are rescaled into absolute variance parameters
(i.e., they are multiplied by x@cpar) and then returned by these methods. If rescale = FALSE,
relative variance parameters are returned, that is, the variances divided by the scaling parameter
cpar. Since the scaling parameter is one of the variances, the relative variance stored in cpar is 1
(the parameter divided by itself).

Transformation of parameters in a model defined in terms of relative variances. When a model is
defined so that the parameters are the relative variances (cpar is not null) and a parameterization
transPars is also specified, then the transformation of parameters is applied to the relative vari-
ances, not to the absolute variances. The relative variances are first transformed and afterwards
they are rescaled back to absolute variances if requested by setting rescale = TRUE. The trans-
formation transPars is applied to the parameters defined in pars; cpar is assumed to be chosen
following other rationale; usually, it is the value that maximizes the likelihood since one of the
variance parameters can be concentrated out of the likelihood function.

Note. When cpar is not null, it is more convenient to store in the slots pars and nopars the values
of the relative variances, while the slot cpar stores the value of the scaling parameter rather than
the relative variance (which will be 1). If the relative values were stored, then the scaling parameter
would need to be recomputed each time the value is requested by get.cpar. Assuming that cpar
is the parameter that is concentrated out of the likelihood function, the expression that maximizes
the likelihood should be evaluated whenever the value is requested to be printed or to do any other
operation. To avoid this, the scaling value is directly stored. This approach makes also sense with
the way the method set.cpar works.

Note for users. For those users that are not familiar with the design and internal structure of the
class stsm, it is safer to use the get and set methods rather than retrieving or modifying the contents
of the slots through the @ and @<- operators.

Value

get.cpar named numeric of length one.

get.nopars named numeric vector.

get.pars named numeric vector.

stsm-get-methods 39

See Also

stsm.

Examples

sample models with arbitrary parameter values

model in standard parameterization
internal parameter values are the same as the model parameter
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var1" = 2, "var2" = 15, "var3" = 30))
m@pars
get.pars(m)

model parameterized, the variances are the square
of an auxiliary vector of parameters
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var1" = 2, "var2" = 15, "var3" = 30), transPars = "square")
auxiliary vector of parameters
m@pars
parameters of the model, variances
get.pars(m)

model rescaled, variances are relative to 'var1'
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var2" = 15, "var3" = 30), cpar = c("var1" = 2))
internal values
m@pars
m@cpar
relative variances
get.pars(m)
get.cpar(m)
absolute variances
get.pars(m, rescale = TRUE)
get.cpar(m, rescale = TRUE)

model defined in terms of relative variances
and with the parameterization \code{transPars="square};
the transformation is applied to the relative variances,
the relative variances are first transformed and afterwards
they are rescaled back to absolute variances if requested
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var2" = 3, "var3" = 6), cpar = c("var1" = 2),
transPars = "square")

c(get.cpar(m, rescale = FALSE), get.pars(m, rescale = FALSE))
c(get.cpar(m, rescale = TRUE), get.pars(m, rescale = TRUE))

when 'cpar' is defined, 'nopars' is also interpreted as a relative variance
and therefore it is rescaled if absolute variances are requested
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var2" = 3), cpar = c("var1" = 2), nopars = c("var3" = 6),
transPars = NULL)

40 stsm-set-methods

v <- c(get.cpar(m, rescale = FALSE), get.pars(m, rescale = FALSE), get.nopars(m, rescale = FALSE))
v[c("var1", "var2", "var3")]
v <- c(get.cpar(m, rescale = TRUE), get.pars(m, rescale = TRUE), get.nopars(m, rescale = TRUE))
v[c("var1", "var2", "var3")]

'nopars' is rescaled as shown in the previous example
but it is not affected by the parameterization chosen for 'pars'
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var2" = 3), cpar = c("var1" = 2), nopars = c("var3" = 6),
transPars = "square")

v <- c(get.cpar(m, rescale = FALSE), get.pars(m, rescale = FALSE), get.nopars(m, rescale = FALSE))
v[c("var1", "var2", "var3")]
v <- c(get.cpar(m, rescale = TRUE), get.pars(m, rescale = TRUE), get.nopars(m, rescale = TRUE))
v[c("var1", "var2", "var3")]

stsm-set-methods Setter Methods for Class stsm

Description

Setter or modifier methods for objects of class stsm.

Usage

S4 method for signature 'stsm'
set.cpar(x, value, check = TRUE, inplace = FALSE)
S4 method for signature 'stsm'
set.nopars(x, v, check = TRUE, inplace = FALSE)
S4 method for signature 'stsm'
set.pars(x, v, check = TRUE, inplace = FALSE)
S4 method for signature 'stsm'
set.sgfc(x, inplace = FALSE)
S4 method for signature 'stsm'
set.xreg(x, xreg, coefs = NULL)

Arguments

x an object of class stsm.

value a numeric value.

v a numeric vector.

check logical. If TRUE, the resulting model is checked for consistency with the defini-
tion of the stsm object.

inplace logical. If TRUE, the input object x is modified in place instead of returning the
whole object.

xreg a matrix or numeric vector of external regressors. The number of rows or length
of the vector must be equal to the length of x@y. If column names are specified
they are used to name the parameters in the slot pars.

stsm-set-methods 41

coefs an optional vector containing the value of the coefficients related to the regres-
sors xreg. If the elements of the vector do not contain names they are assumed
to be defined in the same order as the columns in the matrix xreg.

Details

Models parameterized with non-null transPars. If the model is parameterized according to a non-
null value of the slot transPars, the argument v must contain the values of the auxiliary set of
parameters θ rather than the actual parameters (variances and autoregressive coefficients). For ex-
ample, with x@transPars = "square" the variances are θ2. Although this design may seem to
disagree with the getter methods stsm-get-methods, the relevant input for the setter methods is
actually the auxiliary values θ. Be aware that if transPars is not null the parameters are trans-
formed by get.pars according to the selected parameterization. Therefore, v must be referred to
the non-transformed parameters.

The previous comment does not apply to the argument value since cpar is not affected by transPars.

Setter methods are safer. For those users that are not familiar with the design and internal structure
of the class stsm, it is safer to use setter methods rather than modifying the contents of the slots
through the @<- operator. See the examples below.

Modifying the input object in-place. Instead of returning the whole object and create a new one
or overwrite the original, it is possible to modify just the desired slot in the original object that is
passed as input. In the former case the stsm object returned by the method must be assigned to
another object using the usual operator <-. In the latter approach, the stsm object that is passed as
argument is modified in-place. See the example below. The solution to modify an object in-place
is taken from this post. This option is not a customary solution in R, however, it seems suitable in
this context. The real benefit of this approach would depend on how R deals with objects that are
returned from functions. If assigning the output to a new object involves making copies of all the
slots, then modifying the object in-place would most likely be more efficient since the desired slot
is directly modified avoiding copying the whole object.

After R version 3.1 this issue may become less critical. One of the new features reported in the
release of R 3.1 states: Avoid duplicating the right hand side values in complex assignments when
possible. This reduces copying of replacement values in expressions such as Z$a <- a0. A related
discussion for S4 classes can be found in this post.

Constant terms in the spectral generating function. In pure variance models, some elements of the
spectral generating function (s.g.f.) do not depend on the parameters and can be stored as constants.
The method set.sgfc computes and stores those elements as a matrix in the slot sgfc. This is
useful for example when working with maximum likelihood methods in the frequency domain. In
that context, the spectral generating function has to be updated several times for different parameter
values. Having the information about the constant terms in the slot sgfc saves several computations
whenever the s.g.f. is requested. For details about the s.g.f see stsm.sgf.

Further setter methods. Future versions may include additional setter methods, for example to
change the slot model or to modify the time series x@y. The latter would also require updating
the slots diffy and ssd if requested. Additional methods are not available in the current version
because defining a new object by means of stsm.model will often be better than modifying one of
those slots that do not have a setter method.

http://tolstoy.newcastle.edu.au/R/help/04/02/0966.html
http://stackoverflow.com/questions/22448198/does-r-copy-unevaluated-slots-in-s4-classes-on-assignment/

42 stsm-set-methods

Value

If the slot is modified in place, inplace=TRUE, nothing is returned, the corresponding slot of the
object m passed as argument is modified in place.

If inplace=FALSE, a new stsm object is returned. It contains the same information as the input
object m except for the slot that has been modified.

See Also

stsm, stsm.sgf.

Examples

sample models with arbitrary parameter values
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var1" = 2, "var2" = 15, "var3" = 30))
get.pars(m)

correct modification
m1 <- set.pars(m, c(1, 2, 3))
get.pars(m1)
m1 <- set.pars(m, c(var1 = 11))
get.pars(m1)

correct but error prone
m1@pars[] <- c(4, 22, 33)
get.pars(m1)
m1@pars <- c(var1 = 1, var2 = 2, var3 = 3)
get.pars(m1)

inconsistent assignment (error returned)
'var4' is not a parameter of model 'llm+seas'
try(m1 <- set.pars(m, c(var4 = 4)))
inconsistent assignment (no error returned)
the error is not noticed at this point
unless 'validObject' is called
m1 <- m
m1@pars["var4"] <- 4
get.pars(m1)
try(validObject(m1))

modify only one element
m1 <- set.pars(m, v=c(var1=22))
get.pars(m1)
wrong assignment, the whole vector in the slot is overwritten
no error returned at the time of doing the assignment
m1@pars <- c(var1 = 1)
get.pars(m1)
try(validObject(m1))

consistent assignment but maybe not really intended
all the elements are set equal to 12

stsm-show-methods 43

m1 <- m
m1@pars[] <- 12
get.pars(m1)
warning returned by 'set.pars'
m2 <- set.pars(m, 12)
get.pars(m2)

wrong value unnoticed (negative variance)
m1 <- m
m1@pars[] <- c(-11, 22, 33)
get.pars(m1)
negative sign detected by 'set.pars'
try(m1 <- set.pars(m, c(-11, 22, 33)))

inplace = FALSE
the whole object 'm' is assigned to a new object,
which will probably involve making a copy of all the slots
m <- set.pars(m, c(1,2,3), inplace = FALSE)
get.pars(m)

inplace = TRUE
the output is not assigned to a new object
the only operation is the modification of the slot 'pars'
no apparent additional internal operations such as copying unmodified slots
get.pars(m)
set.pars(m, c(11,22,33), inplace = TRUE)
get.pars(m)

set a matrix of regressors
xreg <- cbind(xreg1 = seq_len(84), xreg2 = c(rep(0, 40), rep(1, 44)))
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson, xreg = xreg)
m
set a new matrix of regressors to an existing
xreg3 <- seq(length(m@y))
m2 <- set.xreg(m, xreg3)
m2
remove the external regressors
m3 <- set.xreg(m, NULL)
m3
m3@xreg
initialize the coefficients to some values
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("xreg1" = 10), xreg = xreg)
m
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("xreg2" = 20, "xreg1" = 10), xreg = xreg)
m

stsm-show-methods Display an Object of Class stsm

44 stsm-transPars-methods

Description

This method displays summary information about an object of class stsm.

Usage

S4 method for signature 'stsm'
show(object)

Arguments

object an object of class stsm.

Details

A succinct summary of the object (name of the model and parameter values) is printed.

Value

Invisible NULL.

See Also

stsm-class.

Examples

m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,
pars = c("var1" = 2, "var2" = 15, "var3" = 30))

show(m)
or just
m

stsm-transPars-methods

Parameterization of Models Defined in the Class stsm

Description

This method provides different transformations of the parameters of a structural time series model.

stsm-transPars-methods 45

Usage

S4 method for signature 'generic'
transPars(x,

type = c("square", "StructTS", "exp", "exp10sq"),
gradient = FALSE, hessian = FALSE,
rp, sclrho = 1.7, sclomega = 1.7, ftrans = NULL, ...)

S4 method for signature 'numeric'
transPars(x,

type = eval(formals(transPars)$type),
gradient = FALSE, hessian = FALSE,
rp, sclrho = 1.7, sclomega = 1.7, ftrans = NULL, ...)

S4 method for signature 'stsm'
transPars(x, type = NULL,

gradient = FALSE, hessian = FALSE,
rp, sclrho = 1.7, sclomega = 1.7, ftrans = NULL, ...)

Arguments

x an object of class stsm.

type a character string indicating the type of transformation. Ignored if x is of class
stsm. See details.

gradient logical. If TRUE, first order derivatives of the transformation function with re-
spect to the parameters in the slot pars are returned.

hessian logical. If TRUE, second order derivatives of the transformation function with
respect to the parameters in the slot pars is returned.

rp numeric value. Regularization parameter used with type = StrucTS. By default
it is the variance of the data x@y divided by 100.

sclrho numeric value. Currently ignored.

sclomega numeric value. Currently ignored.

ftrans a function defining an alternative transformation of the parameters. Ignored if x
is of class stsm. See example below.

... additional arguments to be passed to ftrans.

Details

Rather than using the standard parameterization of the model (in terms of variances and autoregres-
sive coefficients if they are part of the model), it can be parameterized in terms of an auxiliary set
of parameters θ. This may be useful for example when the parameters of the model are selected
by means of a numerical optimization algorithm. Choosing a suitable parameterization ensures
that the solution returned by the algorithm meets some constraints such as positive variances or
autoregressive coefficients within the region of stationarity.

The method transPars can be applied both on a named vector of parameters, e.g. x@pars or on a
model of class stsm.

When the slot transPars is not null, the model is parameterized in terms of θ. The following
transformation of parameters can be considered:

46 stsm-transPars-methods

• "square": the variance parameters are the square of θ.

• "StructTS": transformation used in the function StructTS of the stats package.

• "exp": the variance parameters are the exponential of θ.

• "exp10sq": the variance parameters are (exp(−θ)/10)2.

In the model trend+ar2 defined in stsm.model, the autoregressive coefficients, φ, are transformed
to lie in the region of stationarity: given z1 = φ1/(1 + |φ1|), z2 = φ2/(1 + |φ2|), the transformed
coefficients are φ∗1 = z1 + z2 and φ2 = −z1 · z2.

Other transformations can be defined through the argument ftrans, which can also be defined in the
slot transPars of a stsm object. ftrans must be a function returning a list containing an element
called pars and two other optional elements called gradient and hessian. The parameters to
be transformed are identified by their names. The variances follow the naming convention of the
regular expression “^var\d{1,2}$”, e.g. var1, var2,... The variances of the initial state vector may
also be transformed if they are included in the slot pars; their names follow a similar naming
convention, P01, P02,... An example of ftrans is given below.

Note: If a transformation is defined by means of ftrans the user may need to update the slots lower
and upper if some bounds are still applied to the auxiliary parameters. For example, transPars="StructTS"
does not always yield positive variances and hence lower bounds equal to 0 are needed. By default
lower and upper bounds are not considered if ftrans is used.

The output of get.pars is given in terms of the actual parameters of the model. For example, if the
model is parameterized so that θ2 are the variances of the model and θ are the auxiliary parameters
then, the slot pars contains the values of θ and ger.pars returns θ2.

The transformation transPars is applied to the parameters included in the slot pars. The transfor-
mation does not affect nopars and cpar. The former slot is considered fixed while the latter will
in practice be set equal to a particular value, for example the value that maximizes the concentrated
likelihood function, for which a specific expression can be obtained.

Value

A list containing a named numeric vector with the values of the transformed parameters. If re-
quested, the gradient and Hessian of the transformation function with respect to the parameters are
returned.

See Also

stsm, get.pars.

Examples

sample models with arbitrary parameter values

model in standard parameterization
ower bounds imposed on the variance parameters
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var1" = 2, "var2" = 15, "var3" = 30), transPars = NULL)
get.pars(m)
m@lower

stsm-transPars-methods 47

square transformation
negative values are allowed in 'pars' since
the square will yield positive variances
in fact no lower bounds need to be imposed on the auxiliary parameters
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var1" = -2, "var2" = -5, "var3" = 10), transPars = "square")
validObject(m)
m@lower
m@pars
get.pars(m)

'ftrans', alternative transformation of parameters;
the following parameterization is sometimes found:
variance = exp(-theta) / 10
the function 'ftrans' following the rules given in the details
above can be defined as follows:

ftrans <- function(x, gradient = FALSE, hessian = FALSE)
{

tpars <- x
p <- length(x)
nmspars <- names(x)
idvar <- grep("^var|P0\\d{1,2}$", nmspars, value = FALSE)

if (gradient) {
d1 <- rep(NA, p)
names(d1) <- nmspars

} else d1 <- NULL
if (hessian) {

d2 <- matrix(0, p, p)
rownames(d2) <- colnames(d2) <- nmspars

} else d2 <- NULL

if (length(idvar) > 0) {
tpars[idvar] <- exp(-x[idvar]) / 10

} else warning("No changes done by 'transPars'.")

if (gradient)
{

if (length(idvar) > 0)
d1[idvar] <- -tpars[idvar]

}
if (hessian) {

diag(d2)[idvar] <- tpars[idvar]
}

list(pars = tpars, gradient = d1, hessian = d2)
}

now 'ftrans' can be passed to 'transPars' and be applied
on a named vector of parameters or on a 'stsm' object
transPars(c("var1" = 2, "var2" = 15, "var3" = 30),

ftrans = ftrans, gradient = TRUE, hessian = TRUE)

48 stsm-validObject-methods

m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,
pars = c("var1" = 2, "var2" = 15, "var3" = 30), transPars = ftrans)

get.pars(m)

stsm-validObject-methods

Check the Validity of an Object of Class stsm

Description

Methods to check the validity of an object of class stsm.

Usage

S4 method for signature 'stsm'
check.bounds(x)
S4 method for signature 'stsm'
validObject(object)

Arguments

x an object of class stsm.

object an object of class stsm.

Details

check.bounds checks that the values in the slot pars lie within the lower and upper bounds. These
bounds are stored in the slots lower and upper. Default values or specific values can be given when
creating the object by means of stsm.model.

check.bounds is called by validObject. In some settings it may be required to check only that
the parameters are within the required bounds.

validObject checks additional requirements: e.g. all the parameters taking part in the selected
model are either in the slots pars, nopars or cpar;

it is also checked that the parameters are no duplicated in those slots.

This method is called by stsm-set-methods defined for the slots pars, nopars or cpar. That’s
why it is safer to use the setter methods instead of a direct modification through the operator @<-.

Value

If the input object is valid according to the class definition, the logical TRUE is returned. Otherwise,
an error message is returned.

See Also

stsm and examples in stsm-set-methods.

stsm.model 49

Examples

m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,
pars = c("var1" = 2, "var2" = 15, "var3" = 30))

validObject(m)

force a wrong value (negative variance)
m@pars[1] <- -1
try(validObject(m))
try(check.bounds(m))

duplicates not allowed
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var1" = 2, "var2" = 15, "var3" = 30))
try to define 'var1', already in 'pars', in the slot 'nopars'
try(m <- set.nopars(m, c(var1=22)))
force a duplicate
m@nopars <- c(m@nopars, var1 = 22)
try(validObject(m))

stsm.model Wrapper for Constructor of Objects of Class stsm

Description

Interface to define an object of class stsm. This is a wrapper function to constructor new.

Usage

stsm.model(model = c("local-level", "local-trend", "BSM",
"llm+seas", "trend+ar2", "level+AR2", "level+drift+AR2"),
y, pars = NULL, nopars = NULL, cpar = NULL, xreg = NULL,
lower = NULL, upper = NULL, transPars = NULL,
ssd = FALSE, sgfc = FALSE)

Arguments

model a character selecting the structural time series model.

y a univariate time series, ts.

pars initial values for the parameters of the model. It must be a named vector.

nopars optional named numeric containing the remaining parameters of the model not
included in pars and cpar.

cpar optional named numeric of length one. See details.

xreg optional matrix or numeric vector of external regressors.

lower optional named vector setting lower bounds to some parameters of the model.
The names must follow the same same labelling as pars.

50 stsm.model

upper optional named vector setting upper bounds to some parameters of the model.
The names must follow the same same labelling as pars.

transPars optional character choosing one of the parameterizations defined in transPars
or a function defining an alternative parameterization.

ssd logical. If TRUE, the sample spectral density (periodogram) of the stationary
transformation of the data is computed and stored in the slot ssd. Otherwise, it
is ignored.

sgfc logical. If TRUE, constants terms of the spectral generating function related to
the chosen model are computed and stored in the slot sgfc. Otherwise, it is
ignored.

Details

Slot pars and nopars. In some situations it is convenient to split the vector of parameters in two
vectors, the slot pars and the slot nopars. For example, when the parameters are to be estimated by
an optimization algorithm, only the parameters in pars are allowed to change while the parameters
in nopars are considered fixed.

Scaling parameter cpar. The model can be defined in terms of relative variances. In this case,
the variance that acts as a scaling parameter is stored in the slot cpar. Otherwise, cpar is null
and ignored. Typically, the scaling parameter will be chosen to be the variance parameter that is
concentrated out of the likelihood function.

Naming convention of parameters. The parameters defined in the slots pars, nopars and cpar must
be labelled according to the following naming convention. The variance parameters abide by the
regular expression “^var\d{1,2}$”, e.g. var1, var2,... The variances of the initial state vector, P0,
follow a similar naming convention, P01, P02,... The elements of the initial state vector, a0, are
similarly denoted as a01, a02,...

Default values. Default values are assigned to the slots pars, nopars and cpar if they are no defined
in their corresponding arguments passed to stsm.model. By default, the variance parameters are
defined in the slot pars with value 1. The initial state vector is assigned by default to nopars, it
takes on zero values except for the first element that takes the value of the first observation in the
data. The variance of the initial state vector is assigned by default to nopars as well. By default it
takes on the value 10000 times the variance of the data.

If the argument pars is not NULL, no other parameters are stored in the slot pars. If the argument
nopars is not NULL, the parameters in that argument are added to the other default parameters. This
is more convenient in practice. See the examples below.

Alternative parameterizations. See transPars for available parameterizations of the model. The
definition of a function to be defined in the slot transPars is also explained there.

Stationary transformation of the data. The sample spectral density is computed for the differenced
time series y. The differencing filter is chosen so that the data are rendered stationary according to
the selected model. The stationary form of each model is given in stsm.sgf.

Value

An object of class stsm.

stsm.model 51

Available models

The local level model consists of a random walk plus a Gaussian disturbance term.

The measurement equation is:

y[t] = m[t] + e[t], e[t] ∼ N(0, σ2
1)

The state equation is:
m[t+ 1] = m[t] + v[t], v[t] ∼ N(0, σ2

2)

The local trend model consists of a trend where the slope evolves as a random walk.

The measurement equation is:

y[t] = m[t] + e[t], e[t] ∼ N(0, σ2
1)

The state equations are:

m[t+ 1] = m[t] + n[t] + v[t], v[t] ∼ N(0, σ2
2)

n[t+ 1] = n[t] + w[t], w[t] ∼ N(0, σ2
3)

Setting var3 = 0 yields the local level model. The constraint var2 = 0 involves a smooth trend.

The basic structural model consists of a local trend model plus a seasonal component.

The measurement equation is:

y[t] = m[t] + s[t] + e[t], e[t] ∼ N(0, σ2
1)

The state equations are the same as the local trend model plus a seasonal component:

s[t+ 1] = −s[t]− . . .− s[t− freq + 2] + w[t], w[t] ∼ N(0, σ2
4)

The restriction σ2
4 = 0 yields a deterministic seasonal pattern.

According to the labelling convention used in the package, the variance parameters σ2
1 , σ2

2 , σ2
3 and

σ2
4 are respectively denoted "var1", "var2", "var3" and "var4".

See Also

stsm.

Examples

sample model with arbitrary parameter values
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var1" = 2, "var2" = 6), nopars = c("var3" = 12))
m

parameter values
v <- c("var1" = 2, "var2" = 6, "var3" = 3, "var4" = 12)

define the parameter 'cpar' and let the the remaining parameters

52 stsm.sgf

be defined by default in the slots 'pars' and 'nopars'
m <- stsm.model(model = "BSM", y = JohnsonJohnson,

pars = NULL, nopars = NULL, cpar = v[1])
m@pars
m@nopars
m@cpar

define the slot 'pars', only 'v[1]' is stored in 'pars'
the remaining variances are moved to 'nopars' along
with the initial state vector and its variances
m <- stsm.model(model = "BSM", y = JohnsonJohnson,

pars = v[1])
m@pars
m@nopars
m@cpar

define some of the parameters to be stored in the slot 'nopars'
'only 'v[1:2]' is added to the remaining elements in 'nopars';
by default the variances not defined in 'nopars' are assigned to
'pars' with value 1
m <- stsm.model(model = "BSM", y = JohnsonJohnson,

nopars = v[1:2])
m@pars
m@nopars
m@cpar

define the slot 'pars' and set a particular value to
some variances stored in 'nopars', 'v[2:3]'
'var4' takes the default value 1 and is stored in 'nopars'
since the definition 'pars = v[1]' excludes it form 'pars'
m <- stsm.model(model = "BSM", y = JohnsonJohnson,

pars = v[1], nopars = v[2:3])
m@pars
m@nopars
m@cpar

define the slots 'pars' and 'cpar'
the remaining parameters are stored in 'nopars' with the
values by default
m <- stsm.model(model = "BSM", y = JohnsonJohnson,

pars = v[2:4], nopars = NULL, cpar = v[1])
m@pars
m@nopars
m@cpar

stsm.sgf Spectral Generating Function of Common Structural Time Series
Models

stsm.sgf 53

Description

Evaluate the spectral generating function of of common structural models: local level model, local
trend model and basic structural model.

Usage

stsm.sgf(x, gradient = FALSE, hessian = FALSE, deriv.transPars = FALSE)

Arguments

x object of class stsm.
gradient logical. If TRUE, the gradient is returned.
hessian logical. If TRUE, hessian the gradient is returned.
deriv.transPars

logical. If TRUE, the gradient and the Hessian are scaled by the gradient of the
function that transforms the parameters. Ignored if x@transPars is null.

Details

The stationary form of the local level model is (∆ is the differencing operator):

∆y[t] = v[t] + ∆e[t]

and its spectral generating function at each frequency λ[j] = 2πj/T for j = 0, ..., T − 1 is:

g(λ[j]) = σ2
2 + 2(1− cosλ[j])σ2

1

The stationary form of the local trend model for a time series of frequency S is:

∆2y[t] = ∆v[t] + w[t− 1] + ∆2e[t]

and its spectral generating function is:

g(λ[j]) = 2(1− cosλ[j])σ2
2 + σ2

3 + 4(1− cosλ[j])σ2
1

The stationary form of the basic structural model for a time series of frequency p is:

∆∆py[t] = ∆pv[t] + S(L)w[t− 1] + ∆2s[t] + ∆∆pe[t]

and its spectral generating function is:

g(λ[j]) = gv(λ[j])σ2
2 + gw(λ[j])σ2

3 + gs(λ[j])σ2
4 + ge(λ[j])σ2

1

with

gv(λ[j]) = 2(1− cos(λ[j]p))

gw(λ[j]) = (1− cos(λ[j]p))/(1− cos(λ[j]))

gs(λ[j]) = 4(1− cos(λ[j]))2

ge(λ[j]) = 4(1− cos(λ[j]))(1− cos(λ[j]p))

54 stsm.sgf

Value

A list containing the following results:

sgf spectral generating function of the BSM model at each frequency λ[j] for j =
0, . . . , T − 1.

gradient first order derivatives of the spectral generating function with respect of the pa-
rameters of the model.

hessian second order derivatives of the spsectral generating function with respect of the
parameters of the model.

constants the terms gv(λ[j]), gw(λ[j]), gs(λ[j]) and ge(λ[j]) that do not depend on the
variance parameters.

References

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press.

See Also

set.sgfc, stsm, stsm.model.

Examples

spectral generating function of the local level plus seasonal model
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var1" = 2, "var2" = 15), nopars = c("var3" = 30))
res <- stsm.sgf(m)
res$sgf
plot(res$sgf)
res$constants
the element 'constants' contains the constant variables
related to each component regardless of whether the
variances related to them are in the slot 'pars' or 'nopars'
names(get.pars(m))
colnames(res$constants)

compare analytical and numerical derivatives
identical values
m <- stsm.model(model = "llm+seas", y = JohnsonJohnson,

pars = c("var1" = 2, "var2" = 15, "var3" = 30))
res <- stsm.sgf(m, gradient = TRUE)

fcn <- function(x, model = m) {
m <- set.pars(model, x)
res <- stsm.sgf(m)
sum(res$sgf)

}

a1 <- numDeriv::grad(func = fcn, x = get.pars(m))
a2 <- colSums(res$grad)

stsmFit 55

all.equal(a1, a2, check.attributes = FALSE)

analytical derivatives are evaluated faster than numerically
system.time(a1 <- numDeriv::grad(func = fcn, x = get.pars(m)))
system.time(a2 <- colSums(stsm.sgf(m, gradient = TRUE)$grad))

stsmFit Interface to Different Fitting Procedures

Description

This function is an interface to the methods available in the package for fitting a structural time
series model (maximum likelihood in the time and frequency domain via different optimization
algorithms).

Usage

stsmFit(x, stsm.method = c("maxlik.fd.scoring", "maxlik.td.scoring",
"maxlik.fd.optim", "maxlik.td.optim"), xreg = NULL, ...)

Arguments

x an object of class stsm.
stsm.method a character indicating the method to be used.
... further arguments to be passed to the the function selected in stsm.method.
xreg vector or matrix of external regresors.

Details

This interface is useful to simplify the code and reduce the number of arguments in functions
that call some of those functions that can be specified through stsm.method. For example, the
package tsoutliers uses: do.call("stsmFit", args = c(list(x = y, args.tsmethod)),
where args.tsmethod is a list containing the arguments to be passed to stsmFit, which includes
stsm.method. Thus, the code is simplified since no switch or if statements are necessary; the
number of arguments is also reduced since those that are passed tot the function specified in
stsm.method are gathered in a list.

The external regressors can be defined in the input object x of class stsm. This is the way the
recommend specification for functions maxlik.td and maxlik.fd. This interface allows defining xreg
as an argument passed to this function because it simplifies the code in some functions of package
tsoutliers. If xreg and x@xreg are both not NULL and error is returned.

Value

A list of class stsmFit. See the section ‘Value’ in maxlik.fd.

See Also

maxlik.fd.scoring, maxlik.td.scoring, maxlik.fd.optim and maxlik.td.optim.

Index

∗Topic algebra
force.defpos, 6

∗Topic array
force.defpos, 6

∗Topic classes
stsm-class, 35

∗Topic datasets
gdp4795, 7
sim-data, 32

∗Topic methods
stsm-char2numeric-methods, 33
stsm-get-methods, 37
stsm-set-methods, 40
stsm-show-methods, 43
stsm-transPars-methods, 44
stsm-validObject-methods, 48

∗Topic models
maxlik.em, 10
maxlik.fd, 13
maxlik.td, 16
stsmFit, 55

∗Topic nonlinear
barrier.eval, 3
linesearch, 8
maxlik.em, 10
maxlik.fd, 13
maxlik.td, 16

∗Topic optimize
linesearch, 8

∗Topic package, ts
stsm-package, 2

∗Topic ts, model
stsm.model, 49

∗Topic ts
datagen.stsm, 5
init.vars, 7
maxlik.em, 10
maxlik.fd, 13
maxlik.td, 16

method-logLik, 19
methods-stsmFit, 20
methods-vcov-confint, 22
mloglik.fd, 25
mloglik.td, 29
stsm.sgf, 52
stsmFit, 55

arima, 21

barrier.eval, 3, 14, 15, 18, 28, 32
Brent.fmin (linesearch), 8

call, 14
char2numeric, 5, 21
char2numeric

(stsm-char2numeric-methods), 33
char2numeric,stsm-method

(stsm-char2numeric-methods), 33
check.bounds

(stsm-validObject-methods), 48
check.bounds,stsm-method

(stsm-validObject-methods), 48
coef.stsmFit, 22
coef.stsmFit (methods-stsmFit), 20
confint.stsmFit, 22
confint.stsmFit (methods-vcov-confint),

22

datagen.stsm, 5

fitted.stsm (methods-stsmFit), 20
fitted.stsmFit (methods-stsmFit), 20
force.defpos, 6

gdp4795, 7
get.cpar (stsm-get-methods), 37
get.cpar,stsm-method

(stsm-get-methods), 37
get.nopars (stsm-get-methods), 37

56

INDEX 57

get.nopars,stsm-method
(stsm-get-methods), 37

get.pars, 46
get.pars (stsm-get-methods), 37
get.pars,stsm-method

(stsm-get-methods), 37

init.vars, 7

KalmanFilter, 17, 20, 30, 32
KalmanLike, 32
KF, 30
KF.deriv, 30
KFconvar (mloglik.td), 29

linesearch, 8
llmseas (sim-data), 32
logLik, 28, 32
logLik (method-logLik), 19

maxclik.fd.scoring (maxlik.fd), 13
maxlik.em, 10
maxlik.fd, 8, 13, 18, 20–22, 24, 25, 28, 55
maxlik.fd.optim, 27, 55
maxlik.fd.scoring, 6, 10, 17, 27, 31, 55
maxlik.td, 12, 16, 21, 22, 24, 25, 32, 55
maxlik.td.optim, 31, 55
maxlik.td.scoring, 10, 55
mclapply, 10
mcloglik.fd (mloglik.fd), 25
method-logLik, 19
methods-stsmFit, 20
methods-vcov-confint, 22
mle, 20
mloglik.fd, 4, 15, 20, 25
mloglik.td, 4, 18–20, 29

new, 49

optim, 2, 9, 13–18, 23, 24, 26–29, 31
optimize, 9

plot.stsmComponents (methods-stsmFit),
20

plot.stsmPredict (methods-stsmFit), 20
plot.stsmSmooth (methods-stsmFit), 20
predict.stsm (methods-stsmFit), 20
predict.stsmFit (methods-stsmFit), 20
print.stsmFit (methods-stsmFit), 20

residuals.stsmFit (methods-stsmFit), 20
rmvnorm, 5

set.cpar, 38
set.cpar (stsm-set-methods), 40
set.cpar,stsm-method

(stsm-set-methods), 40
set.nopars (stsm-set-methods), 40
set.nopars,stsm-method

(stsm-set-methods), 40
set.pars (stsm-set-methods), 40
set.pars,stsm-method

(stsm-set-methods), 40
set.sgfc, 54
set.sgfc (stsm-set-methods), 40
set.sgfc,stsm-method

(stsm-set-methods), 40
set.xreg (stsm-set-methods), 40
set.xreg,stsm-method

(stsm-set-methods), 40
show (stsm-show-methods), 43
show,stsm-method (stsm-show-methods), 43
sim-data, 32
step.maxsize, 14
step.maxsize (linesearch), 8
StructTS, 2, 17, 21, 29, 46
stsm, 3, 5–7, 10, 13–15, 17–26, 28, 29, 32–34,

37–42, 44–46, 48, 49, 51, 53–55
stsm (stsm-class), 35
stsm-char2numeric-methods, 33
stsm-class, 35
stsm-get-methods, 37
stsm-package, 2
stsm-set-methods, 40
stsm-show-methods, 43
stsm-transPars-methods, 44
stsm-validObject-methods, 48
stsm.model, 33, 34, 36, 37, 41, 46, 48, 49, 54
stsm.sgf, 8, 41, 42, 50, 52
stsmFit, 55

transPars, 36–38, 50
transPars (stsm-transPars-methods), 44
transPars,generic-method

(stsm-transPars-methods), 44
transPars,numeric-method

(stsm-transPars-methods), 44
transPars,stsm-method

(stsm-transPars-methods), 44

58 INDEX

ts, 49
tsdiag.stsmFit (methods-stsmFit), 20
tsSmooth.stsm (methods-stsmFit), 20
tsSmooth.stsmFit (methods-stsmFit), 20

validObject (stsm-validObject-methods),
48

validObject,stsm-method
(stsm-validObject-methods), 48

vcov.stsm (methods-vcov-confint), 22
vcov.stsmFit, 22
vcov.stsmFit (methods-vcov-confint), 22

	stsm-package
	barrier.eval
	datagen.stsm
	force.defpos
	gdp4795
	init.vars
	linesearch
	maxlik.em
	maxlik.fd
	maxlik.td
	method-logLik
	methods-stsmFit
	methods-vcov-confint
	mloglik.fd
	mloglik.td
	sim-data
	stsm-char2numeric-methods
	stsm-class
	stsm-get-methods
	stsm-set-methods
	stsm-show-methods
	stsm-transPars-methods
	stsm-validObject-methods
	stsm.model
	stsm.sgf
	stsmFit
	Index

