Table Schema

Description

R library for working with Table Schema.

Features

Getting started

Installation

In order to install the latest distribution of R software to your computer you have to select one of the mirror sites of the Comprehensive R Archive Network, select the appropriate link for your operating system and follow the wizard instructions.

For windows users you can:

  1. Go to CRAN
  2. Click download R for Windows
  3. Click Base (This is what you want to install R for the first time)
  4. Download the latest R version
  5. Run installation file and follow the instrustions of the installer.

(Mac) OS X and Linux users may need to follow different steps depending on their system version to install R successfully and it is recommended to read the instructions on CRAN site carefully.

Even more detailed installation instructions can be found in R Installation and Administration manual.

To install RStudio, you can download RStudio Desktop with Open Source License and follow the wizard instructions:

  1. Go to RStudio
  2. Click download on RStudio Desktop
  3. Download on RStudio Desktop free download
  4. Select the appropriate file for your system
  5. Run installation file

To install the tableschema library it is necessary to install first devtools library to make installation of github libraries available.

# Install devtools package if not already
install.packages("devtools")

Install tableschema.r

# And then install the development version from github
devtools::install_github("frictionlessdata/tableschema-r")

Load library

# Install devtools package if not already
# install.packages("jsonlite")
library(jsonlite)
# Install devtools package if not already
# install.packages("future")
library(future)
# load the library using
library(tableschema.r)

Documentation

Jsonlite package is internally used to convert json data to list objects. The input parameters of functions could be json strings, files or lists and the outputs are in list format to easily further process your data in R environment and exported as desired. The examples below show how to use jsonlite package to convert the output back to json adding indentation whitespace. More details about handling json you can see jsonlite documentation or vignettes here.

Moreover future package is also used to load and create Table and Schema classes asynchronously. To retrieve the actual result of the loaded Table or Schema you have to use value(...) to the variable you stored the loaded Table/Schema. More details about future package and sequential and parallel processing you can find here.

Table

A table is a core concept in a tabular data world. It represents a data with a metadata (Table Schema). Let’s see how we could use it in practice.

Consider we have some local csv file. It could be inline data or remote link - all supported by Table class (except local files for in-brower usage of course). But say it’s data.csv for now:

data/cities.csv

city,location
london,"51.50,-0.11"
paris,"48.85,2.30"
rome,N/A

Let’s create and read a table. We use static Table.load method and table.read method with a keyed option to get array of keyed rows:

def = Table.load('inst/extdata/data.csv')
table = value(def)
# add indentation whitespace to JSON output with jsonlite package
toJSON(table$read(keyed = TRUE), pretty = TRUE) # function from jsonlite package
## [
##   {
##     "city": ["london"],
##     "location": ["\"51.50 -0.11\""]
##   },
##   {
##     "city": ["paris"],
##     "location": ["\"48.85 2.30\""]
##   },
##   {
##     "city": ["rome"],
##     "location": ["N/A"]
##   }
## ]
table.headers = table$headers 
table.headers
## [[1]]
## [1] "city"
## 
## [[2]]
## [1] "location"

As we could see our locations are just a strings. But it should be geopoints. Also Rome’s location is not available but it’s also just a N/A string instead of null. First we have to infer Table Schema:

# add indentation whitespace to JSON output with jsonlite package
toJSON(table$infer(), pretty = TRUE) # function from jsonlite package
## {
##   "fields": [
##     {
##       "name": ["city"],
##       "type": ["string"],
##       "format": ["default"]
##     },
##     {
##       "name": ["location"],
##       "type": ["string"],
##       "format": ["default"]
##     }
##   ],
##   "missingValues": [
##     [""]
##   ]
## }
toJSON(table$schema$descriptor, pretty = TRUE) # function from jsonlite package
## {
##   "fields": [
##     {
##       "name": ["city"],
##       "type": ["string"],
##       "format": ["default"]
##     },
##     {
##       "name": ["location"],
##       "type": ["string"],
##       "format": ["default"]
##     }
##   ],
##   "missingValues": [
##     [""]
##   ]
## }
table$read(keyed = TRUE) # Fails

Let’s fix not available location. There is a missingValues property in Table Schema specification. As a first try we set missingValues to N/A in table$schema$descriptor. Schema descriptor could be changed in-place but all changes should be commited by table$schema$commit():

table$schema$descriptor['missingValues'] = 'N/A'
table$schema$commit()
## [1] TRUE
table$schema$valid # false
## [1] FALSE
table$schema$errors
## [[1]]
## [1] "Descriptor validation error:\n            data.missingValues - is the wrong type"

As a good citiziens we’ve decided to check out schema descriptor validity. And it’s not valid! We sould use an array for missingValues property. Also don’t forget to have an empty string as a missing value:

table$schema$descriptor[['missingValues']] = list("", 'N/A')
table$schema$commit()
## [1] TRUE
table$schema$valid # true
## [1] TRUE

All good. It looks like we’re ready to read our data again:

table$read() # or
toJSON(table$read(), pretty = TRUE) # function from jsonlite package

Now we see that:

And because there are no errors on data reading we could be sure that our data is valid againt our schema. Let’s save it:

table$schema$save('schema.json')
table$save('data.csv')

Our data.csv looks the same because it has been stringified back to csv format. But now we have schema.json:

{
"fields": [
{
"name": "city",
"type": "string",
"format": "default"
},
{
"name": "location",
"type": "geopoint",
"format": "default"
}
],
"missingValues": [
"",
"N/A"
]
}

If we decide to improve it even more we could update the schema file and then open it again. But now providing a schema path.

def = Table.load('inst/extdata/data.csv', schema = 'inst/extdata/schema.json')
table = value(def)
table
## <Table>
##   Public:
##     clone: function (deep = FALSE) 
##     headers: active binding
##     infer: function (limit = 100) 
##     initialize: function (src, schema = NULL, strict = FALSE, headers = 1) 
##     iter: function (keyed, extended, cast = TRUE, relations = FALSE, stream = FALSE) 
##     read: function (keyed = FALSE, extended = FALSE, cast = TRUE, relations = FALSE, 
##     save: function (connection) 
##     schema: active binding
##   Private:
##     createRowStream_: function (src) 
##     createUniqueFieldsCache: function (schema) 
##     currentStream_: NULL
##     headers_: NULL
##     headersRow_: 1
##     rowNumber_: 0
##     schema_: Schema, R6
##     src: inst/extdata/data.csv
##     strict_: FALSE
##     uniqueFieldsCache_: list

It was one basic introduction to the Table class. To learn more let’s take a look on Table class API reference.

Table.load(source, schema, strict=FALSE, headers=1, ...)

Factory method to instantiate Table class. This method is async and it should be used with value(...) keyword or as a Promise. If references argument is provided foreign keys will be checked on any reading operation.

table$headers

table$schema

table$iter(keyed, extended, cast=TRUE, relations=FALSE, stream=FALSE)

Iter through the table data and emits rows cast based on table schema. Data casting could be disabled.

table$read(keyed, extended, cast=TRUE, relations=FALSE, limit)

Read the whole table and returns as array of rows. Count of rows could be limited.

table$infer(limit=100)

Infer a schema for the table. It will infer and set Table Schema to table$schema based on table data.

table$save(target)

Save data source to file locally in CSV format with , (comma) delimiter

Schema

Schema

A model of a schema with helpful methods for working with the schema and supported data. Schema instances can be initialized with a schema source as a url to a JSON file or a JSON object. The schema is initially validated (see validate below). By default validation errors will be stored in schema$errors but in a strict mode it will be instantly raised.

Let’s create a blank schema. It’s not valid because descriptor$fields property is required by the Table Schema specification:

def = Schema.load({})
schema = value(def)
schema$valid # false
## [1] FALSE
schema$errors
## [[1]]
## [1] "Descriptor validation error:\n            data.fields - is required"

To do not create a schema descriptor by hands we will use a schema$infer method to infer the descriptor from given data:

toJSON(
  schema$infer(helpers.from.json.to.list('[
    ["id", "age", "name"],
    ["1","39","Paul"],
    ["2","23","Jimmy"],
    ["3","36","Jane"],
    ["4","28","Judy"]
    ]')), pretty = TRUE) # function from jsonlite package
## {
##   "fields": [
##     {
##       "name": ["id"],
##       "type": ["integer"]
##     },
##     {
##       "name": ["age"],
##       "type": ["integer"]
##     },
##     {
##       "name": ["name"],
##       "type": ["string"]
##     }
##   ]
## }
schema$valid # true
## [1] TRUE
toJSON(
  schema$descriptor,
  pretty = TRUE) # function from jsonlite package
## {
##   "fields": [
##     {
##       "name": ["id"],
##       "type": ["integer"],
##       "format": ["default"]
##     },
##     {
##       "name": ["age"],
##       "type": ["integer"],
##       "format": ["default"]
##     },
##     {
##       "name": ["name"],
##       "type": ["string"],
##       "format": ["default"]
##     }
##   ],
##   "missingValues": [
##     [""]
##   ]
## }

Now we have an inferred schema and it’s valid. We could cast data row against our schema. We provide a string input by an output will be cast correspondingly:

toJSON(
  schema$castRow(helpers.from.json.to.list('["5", "66", "Sam"]')),
  pretty = TRUE, auto_unbox = TRUE) # function from jsonlite package
## [
##   5,
##   66,
##   "Sam"
## ]

But if we try provide some missing value to age field cast will fail because for now only one possible missing value is an empty string. Let’s update our schema:

schema$castRow(helpers.from.json.to.list('["6", "N/A", "Walt"]'))
## Error in schema$castRow(helpers.from.json.to.list("[\"6\", \"N/A\", \"Walt\"]")): There are 1 cast errors (see following - Wrong type for header: age and value: N/A
# Cast error
schema$descriptor$missingValues = list('', 'NA')
schema$commit()
## [1] TRUE
schema$castRow(helpers.from.json.to.list('["6", "", "Walt"]'))
## [[1]]
## [1] 6
## 
## [[2]]
## NULL
## 
## [[3]]
## [1] "Walt"

We could save the schema to a local file. And we could continue the work in any time just loading it from the local file:

schema$save('schema.json')
schema = Schema.load('schema.json')

It was onle basic introduction to the Schema class. To learn more let’s take a look on Schema class API reference.

Schema.load(descriptor, strict=FALSE)

Factory method to instantiate Schema class. This method is async and it should be used with value(...) keyword.

schema$valid

schema$errors

schema$descriptor

schema$primaryKey

schema$foreignKeys

schema$fields

schema$fieldNames

schema$getField(name)

Get schema field by name.

schema$addField(descriptor)

Add new field to schema. The schema descriptor will be validated with newly added field descriptor.

schema$removeField(name)

Remove field resource by name. The schema descriptor will be validated after field descriptor removal.

schema$castRow(row)

Cast row based on field types and formats.

schema$infer(rows, headers=1)

Infer and set schema$descriptor based on data sample.

schema$commit(strict)

Update schema instance if there are in-place changes in the descriptor.

descriptor = '{"fields": [{"name": "field", "type": "string"}]}'
def = Schema.load(descriptor)
schema = value(def)
schema$getField("field")$name 
## [1] "field"
schema$descriptor$fields[[1]]$type = "number"
schema$getField("field")$type 
## [1] "string"
schema$commit()
## [1] TRUE
schema$getField("field")$type 
## [1] "number"

schema$save(target)

Save schema descriptor to target destination.

Field

Class represents field in the schema.

Data values can be cast to native R types. Casting a value will check the value is of the expected type, is in the correct format, and complies with any constraints imposed by a schema.

{
"name": "birthday",
"type": "date",
"format": "default",
"constraints": {
"required": true,
"minimum": "2015-05-30"
}
}

Following code will not raise the exception, despite the fact our date is less than minimum constraints in the field, because we do not check constraints of the field descriptor

field = Field$new(helpers.from.json.to.list('{"name": "name", "type": "number"}'))
dateType = field$cast_value('12345') # cast
dateType # print the result
## [1] 12345

And following example will raise exception, because we set flag ‘skip constraints’ to false, and our date is less than allowed by minimum constraints of the field. Exception will be raised as well in situation of trying to cast non-date format values, or empty values

tryCatch(
  dateType = field$cast_value(value = '2014-05-29', constraints = FALSE), 
  error = function(e){# uh oh, something went wrong
  })
## Error in private$castValue(...): Field character(0) can't cast value 2014-05-29 for type number with format default

Values that can’t be cast will raise an Error exception. Casting a value that doesn’t meet the constraints will raise an Error exception.

Table below shows the available types, formats and resultant value of the cast:

Type Formats Casting result

any

default

Any

array

default

Array

boolean

default

Boolean

date

default, any

Date

datetime

default, any

Date

duration

default

Duration

geojson

default, topojson

Object

geopoint

default, list, object

[Number, Number]

integer

default

Number

number

default

Number

object

default

Object

string

default, uri, email, binary

String

time

default, any

Date

year

default

Number

yearmonth

default

[Number, Number]

Field$new(descriptor, missingValues=[''])

(Field$new will change to Field.load)

Constructor to instantiate Field class.

field$name

field$type

field$format

field$required

field$constraints

field$descriptor

field$cast_value(value, constraints=TRUE)

Cast given value according to the field type and format.

field$testValue(value, constraints=TRUE)

Test if value is compliant to the field.

Validate

validate() validates whether a schema is a validate Table Schema accordingly to the specifications. It does not validate data against a schema.

Given a schema descriptor validate returns a validation object:

valid_errors = validate('inst/extdata/schema.json')
valid_errors
## $valid
## [1] TRUE
## 
## $errors
## list()

validate(descriptor)

Validate a Table Schema descriptor.

Infer

Given data source and headers infer will return a Table Schema as a JSON object based on the data values.

Given the data file, example.csv:

id,age,name
1,39,Paul
2,23,Jimmy
3,36,Jane
4,28,Judy

Call infer with headers and values from the datafile:

descriptor = infer('inst/extdata/data_infer.csv')

The descriptor variable is now a list object that can easily converted to JSON:

toJSON(
  descriptor,
  pretty = TRUE
) # function from jsonlite package
## {
##   "fields": [
##     {
##       "name": ["id"],
##       "type": ["integer"],
##       "format": ["default"]
##     },
##     {
##       "name": ["age"],
##       "type": ["integer"],
##       "format": ["default"]
##     },
##     {
##       "name": ["name"],
##       "type": ["string"],
##       "format": ["default"]
##     }
##   ],
##   "missingValues": [
##     [""]
##   ]
## }

infer(source, headers=1, ...)

Infer source schema..

Changelog - News

In NEWS.md described only breaking and the most important changes. The full changelog could be found in nicely formatted commit history.

Contributing

The project follows the Open Knowledge International coding standards. There are common commands to work with the project.Recommended way to get started is to create, activate and load the library environment. To install package and development dependencies into active environment:

devtools::install_github("frictionlessdata/tableschema-r", dependencies = TRUE)

To make test:

test_that(description, {
  expect_equal(test, expected result)
})

To run tests:

devtools::test()

More detailed information about how to create and run tests you can find in testthat package.

Github