
Package ‘SpaDES.core’
March 19, 2019

Type Package

Title Core Utilities for Developing and Running Spatially Explicit
Discrete Event Simulation Models

Description Provide the core discrete event simulation (DES) framework for
implementing spatially explicit simulation models. The core DES components
facilitate modularity, and easily enable the user to include additional
functionality by running user-built simulation modules. Now includes (experimental)
conditional scheduling.

URL http://spades-core.predictiveecology.org/,

https://github.com/PredictiveEcology/SpaDES.core

Date 2019-03-18

Version 0.2.5

Depends R (>= 3.3), quickPlot (>= 0.1.4), reproducible (>= 0.2.7)

Imports codetools, crayon, data.table (>= 1.10.4), DEoptim (>= 2.2-4),
DiagrammeR (>= 0.8.2), dplyr (>= 0.5.0), fastdigest, fpCompare
(>= 0.2.1), googledrive, httr (>= 1.2.1), igraph (>= 1.0.1),
lubridate (>= 1.3.3), methods, parallel, RCurl, R.utils (>=
2.5.0), raster (>= 2.5-8), stats, stringi (>= 1.1.3), tcltk,
tools, utils

Suggests archivist, covr, devtools, knitr, Matrix, magrittr,
microbenchmark, png, RandomFields (>= 3.3.4), RColorBrewer (>=
1.1-2), rgdal, rgenoud, sf, SpaDES.tools (>= 0.2.0), rmarkdown,
testthat (>= 1.0.2)

Encoding UTF-8

Language en-CA

License GPL-3

VignetteBuilder knitr, rmarkdown

BugReports https://github.com/PredictiveEcology/SpaDES.core/issues

ByteCompile yes

1

http://spades-core.predictiveecology.org/
https://github.com/PredictiveEcology/SpaDES.core
https://github.com/PredictiveEcology/SpaDES.core/issues

2 R topics documented:

Collate 'environment.R' 'priority.R' 'module-dependencies-class.R'
'misc-methods.R' 'helpers.R' 'simList-class.R' 'POM.R'
'cache.R' 'check.R' 'checkpoint.R' 'code-checking.R' 'copy.R'
'downloadData.R' 'experiment.R' 'simulation-parseModule.R'
'simulation-simInit.R' 'load.R' 'module-define.R'
'module-dependencies-methods.R' 'module-repository.R'
'module-template.R' 'moduleCoverage.R' 'moduleMetadata.R'
'objectSynonyms.R' 'times.R' 'simList-accessors.R'
'plotting-diagrams.R' 'plotting.R' 'progress.R' 'save.R'
'simulation-spades.R' 'spades-classes.R'
'spades-core-deprecated.R' 'spades-core-package.R'
'suppliedElsewhere.R' 'zzz.R'

RoxygenNote 6.1.1

NeedsCompilation no

Author Alex M Chubaty [aut, cre] (<https://orcid.org/0000-0001-7146-8135>),
Eliot J B McIntire [aut] (<https://orcid.org/0000-0002-6914-8316>),
Yong Luo [ctb],
Steve Cumming [ctb],
Ceres Barros [ctb] (<https://orcid.org/0000-0003-4036-977X>),
Her Majesty the Queen in Right of Canada, as represented by the
Minister of Natural Resources Canada [cph]

Maintainer Alex M Chubaty <alex.chubaty@gmail.com>

Repository CRAN

Date/Publication 2019-03-19 05:43:37 UTC

R topics documented:
SpaDES.core-package . 4
.addChangedAttr,simList-method . 13
.addTagsToOutput,simList-method . 13
.cacheMessage,simList-method . 14
.checkCacheRepo,list-method . 15
.fileExtensions . 15
.findSimList . 17
.objSizeInclEnviros,simList-method . 18
.parseElems,simList-method . 18
.preDigestByClass,simList-method . 19
.prepareOutput,simList-method . 19
.quickCheck . 20
.robustDigest,simList-method . 20
.tagsByClass,simList-method . 22
all.equal.simList . 22
append_attr . 23
checkModule . 24
checkModuleLocal . 24
checkObject . 25

R topics documented: 3

checkParams . 26
checksums . 27
classFilter . 28
Copy,simList-method . 30
copyModule . 31
createsOutput . 32
defineModule . 33
defineParameter . 35
depsEdgeList . 36
depsGraph . 37
doEvent.checkpoint . 38
downloadData . 39
downloadModule . 41
dyears . 43
envir . 44
eventDiagram . 46
events . 47
expectsInput . 49
experiment . 50
extractURL . 57
fileName . 58
getModuleVersion . 59
globals . 60
initialize,simList-method . 61
inputObjects . 61
inputs . 62
inSeconds . 68
loadPackages . 69
makeMemoisable.simList . 70
maxTimeunit . 71
minTimeunit . 72
moduleCoverage . 72
moduleDefaults . 74
moduleDiagram . 74
moduleGraph . 75
moduleMetadata . 76
modules . 77
moduleVersion . 78
newModule . 80
newModuleCode . 82
newModuleDocumentation . 82
newModuleTests . 83
newProgressBar . 84
objectDiagram . 85
objectSynonyms . 85
objs . 87
objSize.simList . 88
openModules . 88

4 SpaDES.core-package

packages . 90
paddedFloatToChar . 91
params . 91
paths . 93
Plot,simList-method . 95
POM . 97
priority . 103
progressInterval . 104
rasterToMemory . 105
remoteFileSize . 106
rndstr . 107
saveFiles . 108
scheduleConditionalEvent . 110
scheduleEvent . 111
show,simList-method . 113
simInit . 113
simInitAndSpades . 118
simList-class . 120
spades . 122
spadesClasses . 125
suppliedElsewhere . 126
times . 127
updateList . 130
zipModule . 131

Index 133

SpaDES.core-package Categorized overview of the SpaDES.core package

Description

This package allows implementation a variety of simulation-type models, with a focus on spatially
explicit models. The core simulation components are built upon a discrete event simulation frame-
work that facilitates modularity, and easily enables the user to include additional functionality by
running user-built simulation modules. Included are numerous tools to visualize various spatial data
formats, as well as non-spatial data. Much work has been done to speed up the core of the DES, with
current benchmarking as low as 56 microseconds overhead for each event (including scheduling,
sorting event queue, spawning event etc.) or 38 microseconds if there is no sorting (i.e., no sorting
occurs under simple conditions). Under most event conditions, therefore, the DES itself will con-
tribute very minimally compared to the content of the events, which may often be milliseconds to
many seconds each event.

Bug reports: https://github.com/PredictiveEcology/SpaDES.core/issues

https://github.com/PredictiveEcology/SpaDES.core/issues

SpaDES.core-package 5

Module repository: https://github.com/PredictiveEcology/SpaDES-modules

Wiki: https://github.com/PredictiveEcology/SpaDES/wiki

——————————————————————————————

1 Spatial discrete event simulation (SpaDES)

A collection of top-level functions for doing spatial discrete event simulation.

1.1 Simulations: There are two workhorse functions that initialize and run a simulation, and
third function for doing multiple spades runs:

simInit Initialize a new simulation
spades Run a discrete event simulation
experiment Run multiple spades calls

1.2 Events: Within a module, important simulation functions include:

scheduleEvent Schedule a simulation event
scheduleConditionalEvent Schedule a conditional simulation event
removeEvent Remove an event from the simulation queue (not yet implemented)

2 The simList object class

The principle exported object class is the simList. All SpaDES simulations operate on this object
class.

simList The ’simList’ class

——————————————————————————————

3 simList methods

Collections of commonly used functions to retrieve or set slots (and their elements) of a simList
object are summarized further below.

3.1 Simulation parameters:

globals List of global simulation parameters.
params Nested list of all simulation parameter.
P Namespaced version of params (i.e., do not have to specify module name).

3.2 loading from disk, saving to disk:

inputs List of loaded objects used in simulation. (advanced)
outputs List of objects to save during simulation. (advanced)

https://github.com/PredictiveEcology/SpaDES-modules
https://github.com/PredictiveEcology/SpaDES/wiki

6 SpaDES.core-package

3.3 objects in the simList:

ls, objects Names of objects referenced by the simulation environment.
ls.str List the structure of the simList objects.
objs List of objects referenced by the simulation environment.

3.4 Simulation paths: Accessor functions for the paths slot and its elements.

cachePath Global simulation cache path.
modulePath Global simulation module path.
inputPath Global simulation input path.
outputPath Global simulation output path.
paths Global simulation paths (cache, modules, inputs, outputs).

3.5 Simulation times: Accessor functions for the simtimes slot and its elements.

time Current simulation time, in units of longest module.
start Simulation start time, in units of longest module.
end Simulation end time, in units of longest module.
times List of all simulation times (current, start, end), in units of longest module..

3.6 Simulation event queues: Accessor functions for the events and completed slots. By
default, the event lists are shown when the simList object is printed, thus most users will not
require direct use of these methods.

events Scheduled simulation events (the event queue). (advanced)
current Currently executing event. (advanced)
completed Completed simulation events. (advanced)
elapsedTime The amount of clock time that modules & events use

3.7 Modules, dependencies, packages: Accessor functions for the depends, modules, and
.loadOrder slots. These are included for advanced users.

depends List of simulation module dependencies. (advanced)
modules List of simulation modules to be loaded. (advanced)
packages Vector of required R libraries of all modules. (advanced)

3.8 simList environment: The simList has a slot called .xData which is an environment. All
objects in the simList are actually in this environment, i.e., the simList is not a list. In R,
environments use pass-by-reference semantics, which means that copying a simList object using
normal R assignment operation (e.g., sim2 <- sim1), will not copy the objects contained within
the .xData slot. The two objects (sim1 and sim2) will share identical objects within that slot.
Sometimes, this not desired, and a true copy is required.

SpaDES.core-package 7

envir Access the environment of the simList directly (advanced)
copy Deep copy of a simList. (advanced)

3.9 Checkpointing:

Accessor method Module Description
checkpointFile .checkpoint Name of the checkpoint file. (advanced)
checkpointInterval .checkpoint The simulation checkpoint interval. (advanced)

3.10 Progress Bar:

progressType .progress Type of graphical progress bar used. (advanced)
progressInterval .progress Interval for the progress bar. (advanced)

——————————————————————————————

4 Module operations

4.1 Creating, distributing, and downloading modules: Modules are the basic unit of SpaDES.
These are generally created and stored locally, or are downloaded from remote repositories, in-
cluding our SpaDES-modules repository on GitHub.

checksums Verify (and optionally write) checksums for a module’s data files.
downloadModule Open all modules nested within a base directory.
getModuleVersion Get the latest module version # from module repository.
newModule Create new module from template.
newModuleDocumentation Create empty documentation for a new module.
openModules Open all modules nested within a base directory.
moduleMetadata Shows the module metadata.
zipModule Zip a module and its associated files.

4.2 Module metadata: Each module requires several items to be defined. These comprise the
metadata for that module (including default parameter specifications, inputs and outputs), and are
currently written at the top of the module’s .R file.

defineModule Define the module metadata
defineParameter Specify a parameter’s name, value and set a default
expectsInput Specify an input object’s name, class, description, sourceURL and other specifications
createsOutput Specify an output object’s name, class, description and other specifications

There are also accessors for many of the metadata entries:

timeunit Accesses metadata of same name
citation Accesses metadata of same name

https://github.com/PredictiveEcology/SpaDES-modules

8 SpaDES.core-package

documentation Accesses metadata of same name
reqdPkgs Accesses metadata of same name
inputObjects Accesses metadata of same name
outputObjects Accesses metadata of same name

4.3 Module dependencies: Once a set of modules have been chosen, the dependency infor-
mation is automatically calculated once simInit is run. There are several functions to assist with
dependency information:

depsEdgeList Build edge list for module dependency graph
depsGraph Build a module dependency graph using igraph

——————————————————————————————

5 Module functions

A collection of functions that help with making modules can be found in the suggested SpaDES.tools
package, and are summarized below.

5.1 Spatial spreading/distances methods: Spatial contagion is a key phenomenon for spatially
explicit simulation models. Contagion can be modelled using discrete approaches or continuous
approaches. Several SpaDES.tools functions assist with these:

adj An optimized (i.e., faster) version of adjacent
cir Identify pixels in a circle around a SpatialPoints* object
directionFromEachPoint Fast calculation of direction and distance surfaces
distanceFromEachPoint Fast calculation of distance surfaces
rings Identify rings around focal cells (e.g., buffers and donuts)
spokes Identify outward radiating spokes from initial points
spread Contagious cellular automata
wrap Create a torus from a grid

5.2 Spatial agent methods: Agents have several methods and functions specific to them:

crw Simple correlated random walk function
heading Determines the heading between SpatialPoints*
makeLines Makes SpatialLines object for, e.g., drawing arrows
move A meta function that can currently only take "crw"
specificNumPerPatch Initiate a specific number of agents per patch

5.3 GIS operations: In addition to the vast amount of GIS operations available in R (mostly
from contributed packages such as sp, raster, maps, maptools and many others), we provide the
following GIS-related functions:

equalExtent Assess whether a list of extents are all equal

SpaDES.core-package 9

5.4 ’Map-reduce’–type operations: These functions convert between reduced and mapped
representations of the same data. This allows compact representation of, e.g., rasters that have
many individual pixels that share identical information.

rasterizeReduced Convert reduced representation to full raster.

5.5 Colors in Raster* objects: We likely will not want the default colours for every map. Here
are several helper functions to add to, set and get colors of Raster* objects:

setColors Set colours for plotting Raster* objects
getColors Get colours in a Raster* objects
divergentColors Create a color palette with diverging colors around a middle

5.6 Random Map Generation: It is often useful to build dummy maps with which to build
simulation models before all data are available. These dummy maps can later be replaced with
actual data maps.

gaussMap Creates a random map using Gaussian random fields
randomPolygons Creates a random polygon with specified number of classes

5.7 Checking for the existence of objects: SpaDES modules will often require the existence of
objects in the simList. These are helpers for assessing this:

checkObject Check for a existence of an object within a simList
checkPath Checks the specified filepath for formatting consistencies

5.8 SELES-type approach to simulation: These functions are essentially skeletons and are not
fully implemented. They are intended to make translations from SELES. You must know how to
use SELES for these to be useful:

agentLocation Agent location
initiateAgents Initiate agents into a SpatialPointsDataFrame
numAgents Number of agents
probInit Probability of initiating an agent or event
transitions Transition probability

5.9 Miscellaneous: Functions that may be useful within a SpaDES context:

inRange Test whether a number lies within range [a,b]
layerNames Get layer names for numerous object classes
loadPackages Simple wrapper for loading packages
numLayers Return number of layers
paddedFloatToChar Wrapper for padding (e.g., zeros) floating numbers to character
updateList Update values in a named list

http://www.gowlland.ca/

10 SpaDES.core-package

——————————————————————————————

6 Caching simulations and simulation components

Simulation caching uses the reproducible package.

Caching can be done in a variety of ways, most of which are up to the module developer. However,
the one most common usage would be to cache a simulation run. This might be useful if a simulation
is very long, has been run once, and the goal is just to retrieve final results. This would be an
alternative to manually saving the outputs.

See example in spades, achieved by using cache = TRUE argument.

Cache Caches a function, but often accessed as arg in spades
cache deprecated. Please use Cache
showCache Shows information about the objects in the cache
clearCache Removes objects from the cache
keepCache Keeps only the objects described
clearStubArtifacts Removes any erroneous items in a cache repository

A module developer can build caching into their module by creating cached versions of their func-
tions.

——————————————————————————————

7 Plotting

Much of the underlying plotting functionality is provided by the quickPlot package.

There are several user-accessible plotting functions that are optimized for modularity and speed of
plotting:

Commonly used:

Plot The workhorse plotting function

Simulation diagrams:

eventDiagram Gantt chart representing the events in a completed simulation.
moduleDiagram Network diagram of simplified module (object) dependencies.
objectDiagram Sequence diagram of detailed object dependencies.

Other useful plotting functions:

clearPlot Helpful for resolving many errors
clickValues Extract values from a raster object at the mouse click location(s)
clickExtent Zoom into a raster or polygon map that was plotted with Plot
clickCoordinates Get the coordinates, in map units, under mouse click
dev Specify which device to plot on, making a non-RStudio one as default

SpaDES.core-package 11

newPlot Open a new default plotting device
rePlot Replots all elements of device for refreshing or moving plot

——————————————————————————————

8 File operations

In addition to R’s file operations, we have added several here to aid in bulk loading and saving of
files for simulation purposes:

loadFiles Load simulation objects according to a filelist
rasterToMemory Read a raster from file to RAM
saveFiles Save simulation objects according to outputs and params

——————————————————————————————

9 Sample modules included in package

Several dummy modules are included for testing of functionality. These can be found with file.path(find.package("SpaDES.core"), "sampleModules").

randomLandscapes Imports, updates, and plots several raster map layers
caribouMovement A simple agent-based (a.k.a., individual-based) model
fireSpread A simple model of a spatial spread process

——————————————————————————————

10 Package options

SpaDES packages use the following options to configure behaviour:

• spades.browserOnError: If TRUE, the default, then any error rerun the same event with
debugonce called on it to allow editing to be done. When that browser is continued (e.g.,
with ’c’), then it will save it reparse it into the simList and rerun the edited version. This may
allow a spades call to be recovered on error, though in many cases that may not be the correct
behaviour. For example, if the simList gets updated inside that event in an iterative manner,
then each run through the event will cause that iteration to occur. When this option is TRUE,
then the event will be run at least 3 times: the first time makes the error, the second time has
debugonce and the third time is after the error is addressed. TRUE is likely somewhat slower.

• reproducible.cachePath: The default local directory in which to cache simulation outputs.
Default is a temporary directory (typically /tmp/RtmpXXX/SpaDES/cache).

• spades.inputPath: The default local directory in which to look for simulation inputs. De-
fault is a temporary directory (typically /tmp/RtmpXXX/SpaDES/inputs).

• spades.debug: The default debugging value debug argument in spades(). Default is TRUE.
• spades.lowMemory: If true, some functions will use more memory efficient (but slower)

algorithms. Default FALSE.

12 SpaDES.core-package

• spades.moduleCodeChecks: Should the various code checks be run during simInit. These
are passed to codetools::checkUsage. Default is given by the function, plus these :list(suppressParamUnused = FALSE, suppressUndefined = TRUE, suppressPartialMatchArgs = FALSE, suppressNoLocalFun = TRUE, skipWith = TRUE).

• spades.modulePath: The default local directory where modules and data will be downloaded
and stored. Default is a temporary directory (typically /tmp/RtmpXXX/SpaDES/modules).

• spades.moduleRepo: The default GitHub repository to use when downloading modules via
downloadModule. Default "PredictiveEcology/SpaDES-modules".

• spades.nCompleted: The maximum number of completed events to retain in the completed
event queue. Default 1000L.

• spades.outputPath: The default local directory in which to save simulation outputs. Default
is a temporary directory (typically /tmp/RtmpXXX/SpaDES/outputs).

• spades.switchPkgNamespaces: Should the search path be modified to ensure a module’s re-
quired packages are listed first? Default FALSE to keep computational overhead down. If TRUE,
there should be no name conflicts among package objects, but it is much slower, especially if
the events are themselves fast.

• spades.tolerance: The default tolerance value used for floating point number comparisons.
Default .Machine$double.eps^0.5.

• spades.useragent: The default user agent to use for downloading modules from GitHub.com.
Default "http://github.com/PredictiveEcology/SpaDES".

Author(s)

Maintainer: Alex M Chubaty <alex.chubaty@gmail.com> (0000-0001-7146-8135)

Authors:

• Eliot J B McIntire <eliot.mcintire@canada.ca> (0000-0002-6914-8316)

Other contributors:

• Yong Luo <yluo1@lakeheadu.ca> [contributor]

• Steve Cumming <Steve.Cumming@sbf.ulaval.ca> [contributor]

• Ceres Barros <cbarros@mail.ubc.ca> (0000-0003-4036-977X) [contributor]

• Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Re-
sources Canada [copyright holder]

See Also

Useful links:

• http://spades-core.predictiveecology.org/

• https://github.com/PredictiveEcology/SpaDES.core

• Report bugs at https://github.com/PredictiveEcology/SpaDES.core/issues

http://spades-core.predictiveecology.org/
https://github.com/PredictiveEcology/SpaDES.core
https://github.com/PredictiveEcology/SpaDES.core/issues

.addChangedAttr,simList-method 13

.addChangedAttr,simList-method

.addChangedAttr for simList objects

Description

This will evaluate which elements in the simList object changed following this Cached function
call. It will add a named character string as an attribute attr(x, ".Cache")$changed, indicating
which ones changed. When this function is subsequently called again, only these changed objects
will be returned. All other simList objects will remain unchanged.

Usage

S4 method for signature 'simList'
.addChangedAttr(object, preDigest, origArguments, ...)

Arguments

object Any R object returned from a function

preDigest The full, element by element hash of the input arguments to that same function,
e.g., from .robustDigest

origArguments These are the actual arguments (i.e., the values, not the names) that were the
source for preDigest

... Anything passed to methods.

See Also

.addChangedAttr.

.addChangedAttr

.addTagsToOutput,simList-method

.addTagsToOutput for simList objects

Description

See .addTagsToOutput.

Usage

S4 method for signature 'simList'
.addTagsToOutput(object, outputObjects, FUN,
preDigestByClass)

14 .cacheMessage,simList-method

Arguments

object Any R object.

outputObjects Optional character vector indicating which objects to return. This is only rele-
vant for list, environment (or similar) objects

FUN A function
preDigestByClass

A list, usually from .preDigestByClass

Author(s)

Eliot McIntire

See Also

.addTagsToOutput

.cacheMessage,simList-method

.cacheMessage for simList objects

Description

See .cacheMessage.

Usage

S4 method for signature 'simList'
.cacheMessage(object, functionName,
fromMemoise = getOption("reproducible.useMemoise", TRUE))

Arguments

object Any R object.

functionName A character string indicating the function name

fromMemoise Logical. If TRUE, the message will be about recovery from memoised copy

See Also

.cacheMessage

.checkCacheRepo,list-method 15

.checkCacheRepo,list-method

.checkCacheRepo for simList objects

Description

See .checkCacheRepo.

Usage

S4 method for signature 'list'
.checkCacheRepo(object, create = FALSE)

Arguments

object An R object

create Logical. If TRUE, then it will create the path for cache.

See Also

.checkCacheRepo

.fileExtensions File extensions map

Description

How to load various types of files in R.

This function has two roles: 1) to proceed with the loading of files that are in a simList or 2) as a
short cut to simInit(inputs = filelist). Generally not to be used by a user.

A data.frame with information on how to load various types of files in R, containing the columns:

• exts: the file extension;

• fun: the function to use for files with this file extension;

• package: the package from which to load fun.

Because of the environment slot, this is not quite as straightforward as just saving the object. This
also has option for file-backed Rasters.

16 .fileExtensions

Usage

.fileExtensions()

loadFiles(sim, filelist, ...)

S4 method for signature 'simList,missing'
loadFiles(sim, filelist, ...)

S4 method for signature 'missing,ANY'
loadFiles(sim, filelist, ...)

S4 method for signature 'missing,missing'
loadFiles(sim, filelist, ...)

.saveFileExtensions()

saveSimList(sim, filename, keepFileBackedAsIs, envir = parent.frame())

Arguments

sim simList object.

filelist list or data.frame to call loadFiles directly from the filelist as described
in Details

... Additional arguments.

filename Character string with the path for saving simList

keepFileBackedAsIs

Logical. If there are file-backed Raster objects, should they be kept in their file-
backed format, or loaded into RAM and saved within the .RData file. If TRUE
(default), then the files will be copied to file.path(dirname(filename), "rasters").

envir environment to search for objects to be saved.

Value

A saved .RData file in filename location.

Author(s)

Eliot McIntire and Alex Chubaty

See Also

inputs

Examples

Not run:

Load random maps included with package

.findSimList 17

filelist <- data.frame(
files = dir(system.file("maps", package = "quickPlot"),

full.names = TRUE, pattern = "tif"),
functions = "rasterToMemory", package = "quickPlot"

)
sim1 <- loadFiles(filelist = filelist)
clearPlot()
if (interactive()) Plot(sim1$DEM)

Second, more sophisticated. All maps loaded at time = 0, and the last one is reloaded
at time = 10 and 20 (via "intervals").
Also, pass the single argument as a list to all functions...
specifically, when add "native = TRUE" as an argument to the raster function
files = dir(system.file("maps", package = "quickPlot"),

full.names = TRUE, pattern = "tif")
arguments = I(rep(list(native = TRUE), length(files)))
filelist = data.frame(

files = files,
functions = "raster::raster",
objectName = NA,
arguments = arguments,
loadTime = 0,
intervals = c(rep(NA, length(files)-1), 10)

)

sim2 <- loadFiles(filelist = filelist)

if we extend the end time and continue running, it will load an object scheduled
at time = 10, and it will also schedule a new object loading at 20 because
interval = 10
end(sim2) <- 20
sim2 <- spades(sim2) # loads the percentPine map 2 more times, once at 10, once at 20

End(Not run)

.findSimList Find simList in a nested list

Description

This is recursive, so it will find the all simLists even if they are deeply nested.

Usage

.findSimList(x)

Arguments

x any object, used here only when it is a list with at least one simList in it

18 .parseElems,simList-method

.objSizeInclEnviros,simList-method

.objSizeInclEnviros for simList objects

Description

See .objSizeInclEnviros.

Usage

S4 method for signature 'simList'
.objSizeInclEnviros(object)

Arguments

object Any R object.

See Also

.objSizeInclEnviros

.parseElems,simList-method

.parseElems for simList class objects

Description

See .parseElems.

Usage

S4 method for signature 'simList'
.parseElems(tmp, elems, envir)

Arguments

tmp A evaluated object

elems A character string to be parsed

envir An environment

See Also

.parseElems

.preDigestByClass,simList-method 19

.preDigestByClass,simList-method

Pre-digesting method for simList

Description

Takes a snapshot of simList objects.

Usage

S4 method for signature 'simList'
.preDigestByClass(object)

Arguments

object Any R object.

Details

See .preDigestByClass.

Author(s)

Eliot McIntire

See Also

.preDigestByClass

.prepareOutput,simList-method

.prepareOutput for simList objects

Description

See .prepareOutput.

Usage

S4 method for signature 'simList'
.prepareOutput(object, cacheRepo, ...)

20 .robustDigest,simList-method

Arguments

object Any R object

cacheRepo A repository used for storing cached objects. This is optional if Cache is used
inside a SpaDES module.

... Arguments of FUN function .

See Also

.prepareOutput

.quickCheck The SpaDES.core variable to switch between quick and robust check-
ing

Description

A variable that can be use by module developers and model users to switch between a quick check
of functions like downloadData, Cache. The module developer must actually use this in their code.

Usage

.quickCheck

Format

An object of class logical of length 1.

.robustDigest,simList-method

.robustDigest for simList objects

Description

This is intended to be used within the Cache function, but can be used to evaluate what a simList
would look like once it is converted to a repeatably digestible object.

Usage

S4 method for signature 'simList'
.robustDigest(object, .objects, length, algo, quick,
classOptions)

.robustDigest,simList-method 21

Arguments

object an object to digest.

.objects Character vector of objects to be digested. This is only applicable if there is a
list, environment (or similar) named objects within it. Only this/these objects
will be considered for caching, i.e., only use a subset of the list, environment or
similar objects.

length Numeric. If the element passed to Cache is a Path class object (from e.g.,
asPath(filename)) or it is a Raster with file-backing, then this will be passed
to digest::digest, essentially limiting the number of bytes to digest (for speed).
This will only be used if quick = FALSE. Default is getOption("reproducible.length"),
which is set to Inf.

algo The algorithms to be used; currently available choices are md5, which is also the
default, sha1, crc32, sha256, sha512, xxhash32, xxhash64 and murmur32.

quick Logical. If TRUE, little or no disk-based information will be assessed, i.e., mostly
its memory content. This is relevant for objects of class character, Path and
Raster currently. For class character, it is ambiguous whether this represents
a character string or a vector of file paths. The function will assess if it is a path
to a file or directory first. If not, it will treat the object as a character string. If it is
known that character strings should not be treated as paths, then quick = TRUE
will be much faster, with no loss of information. If it is file or directory, then
it will digest the file content, or basename(object). For class Path objects,
the file’s metadata (i.e., filename and file size) will be hashed instead of the file
contents if quick = TRUE. If set to FALSE (default), the contents of the file(s)
are hashed. If quick = TRUE, length is ignored. Raster objects are treated as
paths, if they are file-backed.

classOptions Optional list. This will pass into .robustDigest for specific classes. Should be
options that the .robustDigest knows what to do with.

Details

See robustDigest. This method strips out stuff from a simList class object that would make it
otherwise not reproducibly digestible between sessions, operating systems, or machines. This will
likely still not allow identical digest results across R versions.

Author(s)

Eliot McIntire

See Also

robustDigest

22 all.equal.simList

.tagsByClass,simList-method

.tagsByClass for simList objects

Description

See .tagsByClass. Adds current moduleName, eventType, eventTime, and function:spades as
userTags

Usage

S4 method for signature 'simList'
.tagsByClass(object)

Arguments

object Any R object.

Author(s)

Eliot McIntire

See Also

.tagsByClass

all.equal.simList All equal method for simLists

Description

This function removes a few attributes that are added internally by SpaDES.core and are not relevant
to the all.equal. One key element removed is any time stamps, as these are guaranteed to be
different.

Usage

S3 method for class 'equal.simList'
all(target, current, ...)

Arguments

target R object.

current other R object, to be compared with target.

... Further arguments for different methods, notably the following two, for numer-
ical comparison:

append_attr 23

Value

See all.equal

append_attr Add a module to a moduleList

Description

Ordinary base lists and vectors do not retain their attributes when subsetted or appended. This
function appends items to a list while preserving the attributes of items in the list (but not of the list
itself).

Usage

append_attr(x, y)

S4 method for signature 'list,list'
append_attr(x, y)

Arguments

x, y A list of items with optional attributes.

Details

Similar to updateList but does not require named lists.

Value

An updated list with attributes.

Author(s)

Alex Chubaty and Eliot McIntire

Examples

library(igraph) # igraph exports magrittr's pipe operator
tmp1 <- list("apple", "banana") %>% lapply(., `attributes<-`, list(type = "fruit"))
tmp2 <- list("carrot") %>% lapply(., `attributes<-`, list(type = "vegetable"))
append_attr(tmp1, tmp2)
rm(tmp1, tmp2)

24 checkModuleLocal

checkModule Check for the existence of a remote module

Description

Looks in the remote repo for a module named name.

Usage

checkModule(name, repo)

S4 method for signature 'character,character'
checkModule(name, repo)

S4 method for signature 'character,missing'
checkModule(name)

Arguments

name Character string giving the module name.

repo GitHub repository name. Default is "PredictiveEcology/SpaDES-modules",
which is specified by the global option spades.moduleRepo.

Author(s)

Eliot McIntire and Alex Chubaty

checkModuleLocal Check for the existence of a module locally

Description

Looks the module path for a module named name, and checks for existence of all essential module
files listed below.

Usage

checkModuleLocal(name, path, version)

S4 method for signature 'character,character,character'
checkModuleLocal(name, path,
version)

S4 method for signature 'character,ANY,ANY'
checkModuleLocal(name, path, version)

checkObject 25

Arguments

name Character string giving the module name.

path Local path to modules directory. Default is specified by the global option spades.modulePath.

version Character specifying the desired module version.

Details

• ‘data/CHECKSUMS.txt’

• ‘name.R’

Value

Logical indicating presence of the module (invisibly).

Author(s)

Alex Chubaty

checkObject Check for existence of object(s) referenced by a objects slot of a
simList object

Description

Check that a named object exists in the provide simList environment slot, and optionally has
desired attributes.

Usage

checkObject(sim, name, object, layer, ...)

S4 method for signature 'simList,missing,Raster,character'
checkObject(sim, name, object,
layer, ...)

S4 method for signature 'simList,missing,ANY,missing'
checkObject(sim, name, object,
layer, ...)

S4 method for signature 'simList,character,missing,missing'
checkObject(sim, name,
object, layer, ...)

S4 method for signature 'simList,character,missing,character'
checkObject(sim, name,
object, layer, ...)

26 checkParams

S4 method for signature 'missing,ANY,missing,ANY'
checkObject(sim, name, object, layer,
...)

Arguments

sim A simList object.

name A character string specifying the name of an object to be checked.

object An object. This is mostly used internally, or with layer, because it will fail if the
object does not exist.

layer Character string, specifying a layer name in a Raster, if the name is a Raster*
object.

... Additional arguments. Not implemented.

Value

Invisibly return TRUE indicating object exists; FALSE if not.

Author(s)

Alex Chubaty and Eliot McIntire

See Also

library.

checkParams Check use and existence of params passed to simulation.

Description

Checks that all parameters passed are used in a module, and that all parameters used in a module
are passed.

Usage

checkParams(sim, coreParams, ...)

S4 method for signature 'simList,list'
checkParams(sim, coreParams, ...)

Arguments

sim A simList simulation object.

coreParams List of default core parameters.

... Additional arguments. Not implemented.

checksums 27

Value

Invisibly return TRUE indicating object exists; FALSE if not. Sensible messages are be produced
identifying missing parameters.

Author(s)

Alex Chubaty

checksums Calculate checksum for a module’s data files

Description

Verify (and optionally write) checksums for data files in a module’s ‘data/’ subdirectory. The
file ‘data/CHECKSUMS.txt’ contains the expected checksums for each data file. Checksums are
computed using reproducible:::.digest, which is simply a wrapper around digest::digest.

Usage

checksums(module, path, ...)

Arguments

module Character string giving the name of the module.

path Character string giving the path to the module directory.

... Passed to Checksums, notably, write, quickCheck, checksumFile and files.

Details

Modules may require data that for various reasons cannot be distributed with the module source
code. In these cases, the module developer should ensure that the module downloads and extracts
the data required. It is useful to not only check that the data files exist locally but that their check-
sums match those expected.

Note

In version 1.2.0 and earlier, two checksums per file were required because of differences in the
checksum hash values on Windows and Unix-like platforms. Recent versions use a different (faster)
algorithm and only require one checksum value per file. To update your ‘CHECKSUMS.txt’ files
using the new algorithm:

1. specify your module (moduleName <- "my_module");

2. use a temp dir to ensure all modules get fresh copies of the data (tmpdir <- file.path(tempdir(), "SpaDES_modules"));

3. download your module’s data to the temp dir (downloadData(moduleName, tmpdir));

4. initialize a dummy simulation to ensure any ’data prep’ steps in the .inputObjects section
are run (simInit(modules = moduleName));

28 classFilter

5. recalculate your checksums and overwrite the file (checksums(moduleName, tmpdir, write = TRUE));

6. copy the new checksums file to your working module directory (the one not in the temp dir)
(file.copy(from = file.path(tmpdir, moduleName, 'data', 'CHECKSUMS.txt'), to = file.path('path/to/my/moduleDir', moduleName, 'data', 'CHECKSUMS.txt'), overwrite = TRUE)).

classFilter Filter objects by class

Description

Based on http://stackoverflow.com/a/5158978/1380598.

Usage

classFilter(x, include, exclude, envir)

S4 method for signature 'character,character,character,environment'
classFilter(x,
include, exclude, envir)

S4 method for signature 'character,character,character,missing'
classFilter(x, include,
exclude)

S4 method for signature 'character,character,missing,environment'
classFilter(x, include,
envir)

S4 method for signature 'character,character,missing,missing'
classFilter(x, include)

Arguments

x Character vector of object names to filter, possibly from ls.

include Class(es) to include, as a character vector.

exclude Optional class(es) to exclude, as a character vector.

envir The environment ins which to search for objects. Default is the calling environ-
ment.

Value

Vector of object names matching the class filter.

Note

inherits is used internally to check the object class, which can, in some cases, return results
inconsistent with is. See http://stackoverflow.com/a/27923346/1380598. These (known)
cases are checked manually and corrected.

http://stackoverflow.com/a/5158978/1380598
http://stackoverflow.com/a/27923346/1380598

classFilter 29

Author(s)

Alex Chubaty

Examples

Not run:
from global environment
a <- list(1:10) # class `list`
b <- letters # class `character`
d <- stats::runif(10) # class `numeric`
f <- sample(1L:10L) # class `numeric`, `integer`
g <- lm(jitter(d) ~ d) # class `lm`
h <- glm(jitter(d) ~ d) # class `lm`, `glm`
classFilter(ls(), include=c("character", "list"))
classFilter(ls(), include = "numeric")
classFilter(ls(), include = "numeric", exclude = "integer")
classFilter(ls(), include = "lm")
classFilter(ls(), include = "lm", exclude = "glm")
rm(a, b, d, f, g, h)

End(Not run)

from local (e.g., function) environment
local({

e <- environment()
a <- list(1:10) # class `list`
b <- letters # class `character`
d <- stats::runif(10) # class `numeric`
f <- sample(1L:10L) # class `numeric`, `integer`
g <- lm(jitter(d) ~ d) # class `lm`
h <- glm(jitter(d) ~ d) # class `lm`, `glm`
classFilter(ls(), include=c("character", "list"), envir = e)
classFilter(ls(), include = "numeric", envir = e)
classFilter(ls(), include = "numeric", exclude = "integer", envir = e)
classFilter(ls(), include = "lm", envir = e)
classFilter(ls(), include = "lm", exclude = "glm", envir = e)
rm(a, b, d, e, f, g, h)

})

from another environment
e = new.env(parent = emptyenv())
e$a <- list(1:10) # class `list`
e$b <- letters # class `character`
e$d <- stats::runif(10) # class `numeric`
e$f <- sample(1L:10L) # class `numeric`, `integer`
e$g <- lm(jitter(e$d) ~ e$d) # class `lm`
e$h <- glm(jitter(e$d) ~ e$d) # class `lm`, `glm`
classFilter(ls(e), include=c("character", "list"), envir = e)
classFilter(ls(e), include = "numeric", envir = e)
classFilter(ls(e), include = "numeric", exclude = "integer", envir = e)
classFilter(ls(e), include = "lm", envir = e)
classFilter(ls(e), include = "lm", exclude = "glm", envir = e)

30 Copy,simList-method

rm(a, b, d, f, g, h, envir = e)
rm(e)

Copy,simList-method Copy for simList class objects

Description

Because a simList works with an environment to hold all objects, all objects within that slot are pass-
by-reference. That means it is not possible to simply copy an object with an assignment operator:
the two objects will share the same objects. As one simList object changes so will the other. when
this is not the desired behaviour, use this function. NOTE: use capital C, to limit confusion with
data.table::copy() See Copy.

Usage

S4 method for signature 'simList'
Copy(object, objects, queues)

Arguments

object An R object (likely containing environments) or an environment.

objects Whether the objects contained within the simList environment should be copied.
Default TRUE, which may be slow.

queues Logical. Should the events queues (events, current, completed) be deep
copied via data.table::copy

Author(s)

Eliot McIntire

See Also

Copy

copyModule 31

copyModule Create a copy of an existing module

Description

Create a copy of an existing module

Usage

copyModule(from, to, path, ...)

S4 method for signature 'character,character,character'
copyModule(from, to, path, ...)

S4 method for signature 'character,character,missing'
copyModule(from, to, path, ...)

Arguments

from The name of the module to copy.

to The name of the copy.

path The path to a local module directory. Defaults to the path set by the spades.modulePath
option. See setPaths.

... Additional arguments to file.copy, e.g., overwrite = TRUE.

Value

Invisible logical indicating success (TRUE) or failure (FALSE).

Author(s)

Alex Chubaty

Examples

Not run: copyModule(from, to)

32 createsOutput

createsOutput Define an output object of a module

Description

Used to specify an output object’s name, class, description and other specifications.

Usage

createsOutput(objectName, objectClass, desc, ...)

S4 method for signature 'ANY,ANY,ANY'
createsOutput(objectName, objectClass, desc, ...)

S4 method for signature 'character,character,character'
createsOutput(objectName,
objectClass, desc, ...)

Arguments

objectName Character string to define the output object’s name.

objectClass Character string to specify the output object’s class.

desc Text string providing a brief description of the output object.

... Other specifications of the output object.

Value

A data.frame suitable to be passed to outputObjects in a module’s metadata.

Author(s)

Yong Luo

Examples

outputObjects <- dplyr::bind_rows(
createsOutput(objectName = "outputObject1", objectClass = "character",

desc = "this is for example"),
createsOutput(objectName = "outputObject2", objectClass = "numeric",

desc = "this is for example",
otherInformation = "I am the second output object")

)

defineModule 33

defineModule Define a new module.

Description

Specify a new module’s metadata as well as object and package dependencies. Packages are loaded
during this call. Any or all of these can be missing, with missing values set to defaults

Usage

defineModule(sim, x)

S4 method for signature 'simList,list'
defineModule(sim, x)

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

x A list with a number of named elements, referred to as the metadata. See details.

Value

Updated simList object.

Required metadata elements

name Module name. Must match the filename (without the .R extension). This is currently not parsed by SpaDES; it is for human readers only.
description Brief description of the module. This is currently not parsed by SpaDES; it is for human readers only.
keywords Author-supplied keywords. This is currently not parsed by SpaDES; it is for human readers only.
childModules If this contains any character vector, then it will be treated as a parent module. If this is a parent module, then only this list entry will be read. For normal, i.e., ’child modules’, this should be character(0) or NA. If a character vector is provided, then these must be the names of the modules located in the same file path as this parent module that will be loaded during the simInit.
authors Module author information (as a vector of person objects. This is currently not parsed by SpaDES; it is for human readers only.
version Module version number (will be coerced to numeric_version if a character or numeric are supplied). The module developer should update manually this with each change that is made to the module. See http://semver.org/ for a widely accepted standard for version numbering.
spatialExtent The spatial extent of the module supplied via raster::extent. This is currently unimplemented. Once implemented, this should define what spatial region this module is scientifically reasonable to be used in.
timeframe Vector (length 2) of POSIXt dates specifying the temporal extent of the module. Currently unimplemented. Once implemented, this should define what time frame this module is scientifically reasonable to be used for.
timeunit Time scale of the module (e.g., "day", "year"). This MUST be specified. It indicates what ’1’ unit of time means for this module. SpaDES interprets this and if modules have different timeunit values then it will correctly schedule each module, using the smallest (currently the default) timeunit as the ’model’ timeunit in the spades call.
citation List of character strings specifying module citation information. Alternatively, a list of filenames of .bib or similar files. This is currently not parsed by SpaDES; it is for human readers only.
documentation List of filenames referring to module documentation sources. This is currently not parsed by SpaDES; it is for human readers only.

reqdPkgs List of R package names required by the module. These packages will be loaded when simInit is called. Require will be used internally to load if available, and install if not available. Because Require can also download from GitHub.com, these packages can specify package names stored on GitHub, e.g., "PredictiveEcology/SpaDES.core@development".
parameters A data.frame specifying the parameters used in the module. Usually produced by rbind-ing the outputs of multiple defineParameter calls. These parameters indicate the default values that will be used unless a module user overrides them with the params argument in the simInit call. The minimum and maximum are currently used by the SpaDES.shiny::shine function and the POM function, and they should indicate the range of values that are reasonable scientifically.
inputObjects A data.frame specifying the data objects expected as inputs to the module, with columns objectName (class character), objectClass (class character), sourceURL (class character), and other (currently spades does nothing with this column). This data.frame identifies the objects that are expected, but does not do any loading of that object into the simList. The sourceURL gives the developer the opportunity to identify the source of a data file that can be used with the model. This URL will be used if the user calls downloadData (or downloadModule(..., data = TRUE). If the raw data must be modified, the developer can use create a function called .inputObjects in their module. That function will be run during the simInit call. The developer should ensure that if the object is supplied by the module user as an argument in the simInit, then the .inputObjects should not be run, i.e., use an (is.null(sim$xxx))).
outputObjects A data.frame specifying the data objects output by the module, with columns identical to those in inputObjects. Like inputObjects above, this only identifies the objects that this module will output into the simList. The module developer must create the necessary functions that will cause these objects to be put into the simList.

http://semver.org/

34 defineModule

Author(s)

Alex Chubaty

See Also

moduleDefaults

Examples

Not run:
a default version of the defineModule is created with a call to newModule
newModule("test", path = tempdir())

view the resulting module file
if (interactive()) file.edit(file.path(tempdir(), "test", "test.R"))

The default defineModule created by newModule is currently (SpaDES version 1.3.1.9044):
defineModule(sim, list(
name = "test",
description = "insert module description here",
keywords = c("insert key words here"),
authors = c(person(c("First", "Middle"), "Last",

email = "email@example.com", role = c("aut", "cre"))),
childModules = character(0),
version = list(SpaDES = "1.3.1.9044", test = "0.0.1"),
spatialExtent = raster::extent(rep(NA_real_, 4)),
timeframe = as.POSIXlt(c(NA, NA)),
timeunit = NA_character_, # e.g., "year",
citation = list("citation.bib"),
documentation = list("README.txt", "test.Rmd"),
reqdPkgs = list(),
parameters = rbind(

#defineParameter("paramName", "paramClass", value, min, max,
"parameter description")),
defineParameter(".plotInitialTime", "numeric", NA, NA, NA,
"This describes the simulation time at which the first plot event should occur"),
defineParameter(".plotInterval", "numeric", NA, NA, NA,
"This describes the simulation time at which the first plot event should occur"),
defineParameter(".saveInitialTime", "numeric", NA, NA, NA,
"This describes the simulation time at which the first save event should occur"),
defineParameter(".saveInterval", "numeric", NA, NA, NA,
"This describes the simulation time at which the first save event should occur")

),
inputObjects = bind_rows(

expectsInput(objectName = NA_character_, objectClass = NA_character_,
sourceURL = NA_character_, desc = NA_character_, other = NA_character_)

),
outputObjects = bind_rows(

createsOutput(objectName = NA_character_, objectClass = NA_character_,
desc = NA_character_, other = NA_character_)

)
))

defineParameter 35

End(Not run)

defineParameter Define a parameter used in a module

Description

Used to specify a parameter’s name, value, and set a default.

Usage

defineParameter(name, class, default, min, max, desc)

S4 method for signature 'character,character,ANY,ANY,ANY,character'
defineParameter(name,
class, default, min, max, desc)

S4 method for signature 'character,character,ANY,missing,missing,character'
defineParameter(name,
class, default, desc)

S4 method for signature 'missing,missing,missing,missing,missing,missing'
defineParameter()

Arguments

name Character string giving the parameter name.

class Character string giving the parameter class.

default The default value to use when none is specified by the user. Non-standard eval-
uation is used for the expression.

min With max, used to define a suitable range of values. Non-standard evaluation is
used for the expression.

max With min, used to define a suitable range of values. Non-standard evaluation is
used for the expression.

desc Text string providing a brief description of the parameter.

Value

data.frame

36 depsEdgeList

Note

Be sure to use the correct NA type: logical (NA), integer (NA_integer_), real (NA_real_), complex
(NA_complex_), or character (NA_character_). See NA.

Author(s)

Alex Chubaty

See Also

P, params for accessing these parameters in a module.

Examples

parameters = rbind(
defineParameter("lambda", "numeric", 1.23, desc = "intrinsic rate of increase"),
defineParameter("P", "numeric", 0.2, 0, 1, "probability of attack")

)

Not run:
Create a new module, then access parameters using \code{P}
tmpdir <- file.path(tempdir(), "test")
checkPath(tmpdir, create = TRUE)

creates a new, "empty" module -- it has defaults for everything that is required
newModule("testModule", tmpdir)

Look at new module code -- see defineParameter
file.edit(file.path(tmpdir, "testModule", "testModule.R"))

initialize the simList
mySim <- simInit(modules = "testModule",

paths = list(modulePath = tmpdir))

Access one of the parameters -- because this line is not inside a module
function, we must specify the module name. If used within a module,
we can omit the module name
P(mySim, "testModule")$.useCache

End(Not run)

depsEdgeList Build edge list for module dependency graph

Description

Build edge list for module dependency graph

depsGraph 37

Usage

depsEdgeList(sim, plot)

S4 method for signature 'simList,logical'
depsEdgeList(sim, plot)

S4 method for signature 'simList,missing'
depsEdgeList(sim, plot)

Arguments

sim A simList object.

plot Logical indicating whether the edgelist (and subsequent graph) will be used for
plotting. If TRUE, duplicated rows (i.e., multiple object dependencies between
modules) are removed so that only a single arrow is drawn connecting the mod-
ules. Default is FALSE.

Value

A data.table whose first two columns give a list of edges and remaining columns the attributes of
the dependency objects (object name, class, etc.).

Author(s)

Alex Chubaty

depsGraph Build a module dependency graph

Description

Build a module dependency graph

Usage

depsGraph(sim, plot)

S4 method for signature 'simList,logical'
depsGraph(sim, plot)

S4 method for signature 'simList,missing'
depsGraph(sim)

38 doEvent.checkpoint

Arguments

sim A simList object.

plot Logical indicating whether the edgelist (and subsequent graph) will be used for
plotting. If TRUE, duplicated rows (i.e., multiple object dependencies between
modules) are removed so that only a single arrow is drawn connecting the mod-
ules. Default is FALSE.

Value

An igraph object.

Author(s)

Alex Chubaty

doEvent.checkpoint Simulation checkpoints.

Description

Save and reload the current state of the simulation, including the state of the random number gen-
erator, by scheduling checkpoint events.

Usage

doEvent.checkpoint(sim, eventTime, eventType, debug = FALSE)

checkpointLoad(file)

.checkpointSave(sim, file)

checkpointFile(sim)

S4 method for signature 'simList'
checkpointFile(sim)

checkpointFile(sim) <- value

S4 replacement method for signature 'simList'
checkpointFile(sim) <- value

checkpointInterval(sim)

S4 method for signature 'simList'
checkpointInterval(sim)

downloadData 39

checkpointInterval(sim) <- value

S4 replacement method for signature 'simList'
checkpointInterval(sim) <- value

Arguments

sim A simList simulation object.

eventTime A numeric specifying the time of the next event.

eventType A character string specifying the type of event: one of either "init", "load",
or "save".

debug Optional logical flag determines whether sim debug info will be printed (default
debug = FALSE).

file The checkpoint file.

value The object to be stored at the slot.

Details

RNG save code adapted from: http://www.cookbook-r.com/Numbers/Saving_the_state_of_
the_random_number_generator/ and https://stackoverflow.com/questions/13997444/

Value

Returns the modified simList object.

Author(s)

Alex Chubaty

See Also

.Random.seed.

Other functions to access elements of a simList object: .addDepends, envir, events, globals,
inputs, modules, objs, packages, params, paths, progressInterval, times

downloadData Download module data

Description

Download external data for a module if not already present in the module directory, or if there is a
checksum mismatch indicating that the file is not the correct one.

http://www.cookbook-r.com/Numbers/Saving_the_state_of_the_random_number_generator/
http://www.cookbook-r.com/Numbers/Saving_the_state_of_the_random_number_generator/
https://stackoverflow.com/questions/13997444/

40 downloadData

Usage

downloadData(module, path, quiet, quickCheck = FALSE,
overwrite = FALSE, files = NULL, checked = NULL, urls = NULL,
children = NULL, ...)

S4 method for signature 'character,character,logical'
downloadData(module, path, quiet,
quickCheck = FALSE, overwrite = FALSE, files = NULL,
checked = NULL, urls = NULL, children = NULL, ...)

S4 method for signature 'character,missing,missing'
downloadData(module, quickCheck,
overwrite, files, checked, urls, children)

S4 method for signature 'character,missing,logical'
downloadData(module, quiet,
quickCheck, overwrite, files, checked, urls, children)

S4 method for signature 'character,character,missing'
downloadData(module, path,
quickCheck, overwrite, files, checked, urls, children)

Arguments

module Character string giving the name of the module.

path Character string giving the path to the module directory.

quiet Logical. This is passed to download.file. Default is FALSE.

quickCheck Logical. If TRUE, then the check with local data will only use file.size instead
of digest::digest. This is faster, but potentially much less robust.

overwrite Logical. Should local data files be overwritten in case they exist? Default is
FALSE.

files A character vector of length 1 or more if only a subset of files should be checked
in the ‘CHECKSUMS.txt’ file.

checked The result of a previous checksums call. This should only be used when there
is no possibility that the file has changed, i.e., if downloadData is called from
inside another function.

urls Character vector of urls from which to get the data. This is automatically found
from module metadata when this function invoked with SpaDES.core::downloadModule(..., data = TRUE).
See also prepInputs.

children The character vector of child modules (without path) to also run downloadData
on

... Passed to preProcess, e.g., purge

downloadModule 41

Details

downloadData requires a checksums file to work, as it will only download the files specified therein.
Hence, module developers should make sure they have manually downloaded all the necessary data
and ran checksums to build a checksums file.

There is an experimental attempt to use the googledrive package to download data from a shared
(publicly or with individual users) file. To try this, put the Google Drive URL in sourceURL ar-
gument of expectsInputs in the module metadata, and put the filename once downloaded in the
objectName argument. If using RStudio Server, you may need to use "out of band" authentica-
tion by setting options(httr_oob_default = TRUE). To avoid caching of Oauth credentials, set
options(httr_oauth_cache = TRUE).

There is also an experimental option for the user to make a new ‘CHECKSUMS.txt’ file if there is a
sourceURL but no entry for that file. This is experimental and should be used with caution.

Value

Invisibly, a list of downloaded files.

Author(s)

Alex Chubaty & Eliot McIntire

See Also

prepInputs, checksums, and downloadModule for downloading modules and building a check-
sums file.

Examples

Not run:
For a Google Drive example
In metadata:
expectsInputs("theFilename.zip", "NA", "NA",

sourceURL = "https://drive.google.com/open?id=1Ngb-jIRCSs1G6zcuaaCEFUwldbkI_K8Ez")
create the checksums file
checksums("thisModule", "there", write = TRUE)
downloadData("thisModule", "there", files = "theFilename.zip")

End(Not run)

downloadModule Download a module from a SpaDES module GitHub repository

Description

Download a .zip file of the module and extract (unzip) it to a user-specified location.

42 downloadModule

Usage

downloadModule(name, path, version, repo, data, quiet,
quickCheck = FALSE, overwrite = FALSE)

S4 method for signature
'character,character,character,character,logical,logical,ANY,logical'
downloadModule(name,
path, version, repo, data, quiet, quickCheck = FALSE,
overwrite = FALSE)

S4 method for signature
'character,missing,missing,missing,missing,missing,ANY,ANY'
downloadModule(name,
quickCheck, overwrite)

S4 method for signature 'character,ANY,ANY,ANY,ANY,ANY,ANY,ANY'
downloadModule(name,
path, version, repo, data, quiet, quickCheck = FALSE,
overwrite = FALSE)

Arguments

name Character string giving the module name.

path Character string giving the location in which to save the downloaded module.

version The module version to download. (If not specified, or NA, the most recent version
will be retrieved.)

repo GitHub repository name, specified as "username/repo". Default is "PredictiveEcology/SpaDES-modules",
which is specified by the global option spades.moduleRepo. Only master
branches can be used at this point.

data Logical. If TRUE, then the data that is identified in the module metadata will be
downloaded, if possible. Default FALSE.

quiet Logical. This is passed to download.file (default FALSE).

quickCheck Logical. If TRUE, then the check with local data will only use file.size instead
of digest::digest. This is faster, but potentially much less robust.

overwrite Logical. Should local module files be overwritten in case they exist? Default
FALSE.

Details

Currently only works with GitHub repositories where modules are located in a modules directory
in the root tree on the master branch. Module .zip files’ names should contain the version number
and be inside their respective module folders (see zipModule for zip compression of modules).

dyears 43

Value

A list of length 2. The first element is a character vector containing a character vector of extracted
files for the module. The second element is a tbl with details about the data that is relevant for the
function, including whether it was downloaded or not, and whether it was renamed (because there
was a local copy that had the wrong file name).

Note

downloadModule uses the GITHUB_PAT environment variable if a value is set. This alleviates 403
errors caused by too-frequent downloads. Generate a GitHub personal access token with no addi-
tional permissions at https://github.com/settings/tokens, and add this key to ‘.Renviron’
as GITHUB_PAT=<your-github-pat-here>.

The default is to overwrite any existing files in the case of a conflict.

Author(s)

Alex Chubaty

See Also

zipModule for creating module .zip folders.

dyears SpaDES time units

Description

SpaDES modules commonly use approximate durations that divide with no remainder among them-
selves. For example, models that simulate based on a "week" timestep, will likely want to fall in
lock step with a second module that is a "year" timestep. Since, weeks, months, years don’t really
have this behaviour because of: leap years, leap seconds, not quite 52 weeks in a year, months that
are of different duration, etc. We have generated a set of units that work well together that are based
on the astronomical or "Julian" year. In an astronomical year, leap years are added within each year
with an extra 1/4 day, (i.e., 1 year == 365.25 days); months are defined as year/12, and weeks as
year/52.

Usage

dyears(x)

S4 method for signature 'numeric'
dyears(x)

dmonths(x)

S4 method for signature 'numeric'
dmonths(x)

https://github.com/settings/tokens

44 envir

dweeks(x)

S4 method for signature 'numeric'
dweeks(x)

dweek(x)

dmonth(x)

dyear(x)

dsecond(x)

dday(x)

dhour(x)

dNA(x)

S4 method for signature 'ANY'
dNA(x)

Arguments

x numeric. Number of the desired units

Details

When these units are not correct, a module developer can create their own time unit using, and create
a function to calculate the number of seconds in that unit using the "d" prefix (for duration), follow-
ing the lubridate package standard: dfortnight <- function(x) lubridate::duration(dday(14)).
Then the module developer can use "fortnight" as the module’s time unit.

Value

Number of seconds within each unit

Author(s)

Eliot McIntire

envir Simulation environment

envir 45

Description

Accessor functions for the .xData slot, which is the default virtual slot for an S4 class object that
inherits from an S3 object (specifically, the simList inherits from environment) in a simList
object. These are included for advanced users.

Usage

envir(sim)

S4 method for signature 'simList'
envir(sim)

envir(sim) <- value

S4 replacement method for signature 'simList'
envir(sim) <- value

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

value The object to be stored at the slot.

Details

Currently, only get and set methods are defined. Subset methods are not.

Value

Returns or sets the value of the slot from the simList object.

Author(s)

Alex Chubaty

See Also

SpaDES.core-package, specifically the section 1.2.8 on simList environment.

Other functions to access elements of a simList object: .addDepends, doEvent.checkpoint,
events, globals, inputs, modules, objs, packages, params, paths, progressInterval, times

46 eventDiagram

eventDiagram Simulation event diagram

Description

Create a Gantt Chart representing the events in a completed simulation. This event diagram is
constructed using the completed event list To change the number of events shown, provide an n
argument.

Usage

eventDiagram(sim, n, startDate, ...)

S4 method for signature 'simList,numeric,character'
eventDiagram(sim, n, startDate, ...)

S4 method for signature 'simList,missing,character'
eventDiagram(sim, n, startDate, ...)

S4 method for signature 'simList,missing,missing'
eventDiagram(sim, n, startDate, ...)

Arguments

sim A simList object (typically corresponding to a completed simulation).

n The number of most recently completed events to plot.

startDate A character representation of date in YYYY-MM-DD format.

... Additional arguments passed to mermaid. Useful for specifying height and
width.

Details

Simulation time is presented on the x-axis, starting at date ’startDate’. Each module appears in
a color-coded row, within which each event for that module is displayed corresponding to the se-
quence of events for that module. Note that only the start time of the event is meaningful is these
figures: the width of the bar associated with a particular module’s event DOES NOT correspond to
an event’s "duration".

Based on this StackOverflow answer: http://stackoverflow.com/a/29999300/1380598.

Value

Plots an event diagram as Gantt Chart, invisibly returning a mermaid object.

Note

A red vertical line corresponding to the current date may appear on the figure. This is useful for
Gantt Charts generally but can be considered a ’bug’ here.

http://stackoverflow.com/a/29999300/1380598

events 47

Author(s)

Alex Chubaty

See Also

mermaid.

events Simulation event lists

Description

Accessor functions for the events and completed slots of a simList object. These path functions
will extract the values that were provided to the simInit function in the path argument.

Usage

events(sim, unit)

S4 method for signature 'simList,character'
events(sim, unit)

S4 method for signature 'simList,missing'
events(sim, unit)

events(sim) <- value

S4 replacement method for signature 'simList'
events(sim) <- value

conditionalEvents(sim, unit)

S4 method for signature 'simList,character'
conditionalEvents(sim, unit)

S4 method for signature 'simList,missing'
conditionalEvents(sim, unit)

current(sim, unit)

S4 method for signature 'simList,character'
current(sim, unit)

S4 method for signature 'simList,missing'
current(sim, unit)

current(sim) <- value

48 events

S4 replacement method for signature 'simList'
current(sim) <- value

completed(sim, unit, times = TRUE)

S4 method for signature 'simList,character'
completed(sim, unit, times = TRUE)

S4 method for signature 'simList,missing'
completed(sim, unit, times = TRUE)

completed(sim) <- value

S4 replacement method for signature 'simList'
completed(sim) <- value

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

unit Character. One of the time units used in SpaDES.

value The object to be stored at the slot.

times Logical. Should this function report the clockTime

Details

By default, the event lists are shown when the simList object is printed, thus most users will not
require direct use of these methods.

events Scheduled simulation events (the event queue).
completed Completed simulation events.

Currently, only get and set methods are defined. Subset methods are not.

Value

Returns or sets the value of the slot from the simList object.

Note

Each event is represented by a data.table row consisting of:

• eventTime: The time the event is to occur.

• moduleName: The module from which the event is taken.

• eventType: A character string for the programmer-defined event type.

expectsInput 49

See Also

SpaDES.core-package, specifically the section 1.2.6 on Simulation event queues.

Other functions to access elements of a simList object: .addDepends, doEvent.checkpoint,
envir, globals, inputs, modules, objs, packages, params, paths, progressInterval, times

expectsInput Define an input object that the module expects.

Description

Used to specify an input object’s name, class, description, source url and other specifications.

Usage

expectsInput(objectName, objectClass, desc, sourceURL, ...)

S4 method for signature 'ANY,ANY,ANY,ANY'
expectsInput(objectName, objectClass, desc,
sourceURL, ...)

S4 method for signature 'character,character,character,character'
expectsInput(objectName,
objectClass, desc, sourceURL, ...)

S4 method for signature 'character,character,character,missing'
expectsInput(objectName,
objectClass, desc, sourceURL, ...)

Arguments

objectName Character string to define the input object’s name.

objectClass Character string to specify the input object’s class.

desc Text string providing a brief description of the input object.

sourceURL Character string to specify an URL to reach the input object, default is NA.

... Other specifications of the input object.

Value

A data.frame suitable to be passed to inputObjects in a module’s metadata.

Author(s)

Yong Luo

50 experiment

Examples

inputObjects <- dplyr::bind_rows(
expectsInput(objectName = "inputObject1", objectClass = "character",

desc = "this is for example", sourceURL = "not available"),
expectsInput(objectName = "inputObject2", objectClass = "numeric",

desc = "this is for example", sourceURL = "not available",
otherInformation = "I am the second input object")

)

experiment Run an experiment using spades

Description

This is essentially a wrapper around the spades call that allows for multiple calls to spades. This
function will use a single processor, or multiple processors if beginCluster has been run first or a
cluster object is passed in the cl argument (gives more control to user).

Usage

experiment(sim, replicates = 1, params, modules, objects = list(),
inputs, dirPrefix = "simNum", substrLength = 3,
saveExperiment = TRUE, experimentFile = "experiment.RData",
clearSimEnv = FALSE, notOlderThan, cl, ...)

S4 method for signature 'simList'
experiment(sim, replicates = 1, params, modules,
objects = list(), inputs, dirPrefix = "simNum", substrLength = 3,
saveExperiment = TRUE, experimentFile = "experiment.RData",
clearSimEnv = FALSE, notOlderThan, cl, ...)

Arguments

sim A simList simulation object, generally produced by simInit.

replicates The number of replicates to run of the same simList. See details and examples.

params Like for simInit, but for each parameter, provide a list of alternative values.
See details and examples.

modules Like for simInit, but a list of module names (as strings). See details and exam-
ples.

objects Like for simInit, but a list of named lists of named objects. See details and
examples.

inputs Like for simInit, but a list of inputs data.frames. See details and examples.

dirPrefix String vector. This will be concatenated as a prefix on the directory names. See
details and examples.

experiment 51

substrLength Numeric. While making outputPath for each spades call, this is the number of
characters kept from each factor level. See details and examples.

saveExperiment Logical. Should params, modules, inputs, sim, and resulting experimental de-
sign be saved to a file. If TRUE are saved to a single list called experiment.
Default TRUE.

experimentFile String. Filename if saveExperiment is TRUE; saved to outputPath(sim) in
.RData format. See Details.

clearSimEnv Logical. If TRUE, then the envir(sim) of each simList in the return list is emp-
tied. This is to reduce RAM load of large return object. Default FALSE.

notOlderThan Date or time. Passed to reproducible::Cache to update the cache. Default is
NULL, meaning don’t update the cache. If Sys.time() is provided, then it will
force a recache, i.e., remove old value and replace with new value. Ignored if
cache is FALSE.

cl A cluster object. Optional. This would generally be created using parallel::makeCluster
or equivalent. This is an alternative way, instead of beginCluster(), to use par-
allelism for this function, allowing for more control over cluster use.

... Passed to spades. Specifically, debug, .plotInitialTime, .saveInitialTime,
cache and/or notOlderThan. Caching is still experimental. It is tested to work
under some conditions, but not all. See details.

Details

Generally, there are 2 reasons to do this: replication and varying simulation inputs to accomplish
some sort of simulation experiment. This function deals with both of these cases. In the case of
varying inputs, this function will attempt to create a fully factorial experiment among all levels of
the variables passed into the function. If all combinations do not make sense, e.g., if parameters and
modules are varied, and some of the parameters don’t exist in all combinations of modules, then the
function will do an "all meaningful combinations" factorial experiment. Likewise, fully factorial
combinations of parameters and inputs may not be the desired behaviour. The function requires a
simList object, acting as the basis for the experiment, plus optional inputs and/or objects and/or
params and/or modules and/or replications.

This function requires a complete simList: this simList will form the basis of the modifications as
passed by params, modules, inputs, and objects. All params, modules, inputs or objects passed into
this function will override the corresponding params, modules, inputs, or identically named objects
that are in the sim argument.

This function is parallel aware, using the same mechanism as used in the raster package. Specif-
ically, if you start a cluster using beginCluster, then this experiment function will automatically
use that cluster. It is always a good idea to stop the cluster when finished, using endCluster.

Here are generic examples of how params, modules, objects, and inputs should be structured.

params = list(moduleName = list(paramName = list(val1, val2))).

modules = list(c("module1","module2"), c("module1","module3"))

objects = list(objName = list(object1=object1, object2=object2))

inputs = list(data.frame(file = pathToFile1, loadTime = 0, objectName = "landscape", stringsAsFactors = FALSE), data.frame(file = pathToFile2, loadTime = 0, objectName = "landscape", stringsAsFactors = FALSE)
)

52 experiment

Output directories are changed using this function: this is one of the dominant side effects of this
function. If there are only replications, then a set of subdirectories will be created, one for each
replicate. If there are varying parameters and or modules, outputPath is updated to include a
subdirectory for each level of the experiment. These are not nested, i.e., even if there are nested
factors, all subdirectories due to the experimental setup will be at the same level. Replicates will
be one level below this. The subdirectory names will include the module(s), parameter names, the
parameter values, and input index number (i.e., which row of the inputs data.frame). The default
rule for naming is a concatenation of:

1. The experiment level (arbitrarily starting at 1). This is padded with zeros if there are many
experiment levels.

2. The module, parameter name and parameter experiment level (not the parameter value, as values
could be complex), for each parameter that is varying.

3. The module set.

4. The input index number

5. Individual identifiers are separated by a dash.

6. Module - Parameter - Parameter index triplets are separated by underscore.

e.g., a folder called: 01-fir_spr_1-car_N_1-inp_1 would be the first experiment level (01), the
first parameter value for the spr* parameter of the fir* module, the first parameter value of the N
parameter of the car* module, and the first input dataset provided.

This subdirectory name could be long if there are many dimensions to the experiment. The param-
eter substrLength determines the level of truncation of the parameter, module and input names
for these subdirectories. For example, the resulting directory name for changes to the spreadprob
parameter in the fireSpread module and the N parameter in the caribouMovement module would
be: 1_fir_spr_1-car_N_1 if substrLength is 3, the default.

Replication is treated slightly differently. outputPath is always 1 level below the experiment level
for a replicate. If the call to experiment is not a factorial experiment (i.e., it is just replication),
then the default is to put the replicate subdirectories at the top level of outputPath. To force
this one level down, dirPrefix can be used or a manual change to outputPath before the call to
experiment.

dirPrefix can be used to give custom names to directories for outputs. There is a special value,
"simNum", that is used as default, which is an arbitrary number associated with the experiment. This
corresponds to the row number in the attr(sims, "experiment"). This "simNum" can be used
with other strings, such as dirPrefix = c("expt", "simNum").

The experiment structure is kept in two places: the return object has an attribute, and a file named
experiment.RData (see argument experimentFile) located in outputPath(sim).

substrLength, if 0, will eliminate the subdirectory naming convention and use only dirPrefix.

If cache = TRUE is passed, then this will pass this to spades, with the additional argument
replicate = x, where x is the replicate number. That means that if a user runs experiment
with replicate = 4 and cache = TRUE, then SpaDES will run 4 replicates, caching the results,
including replicate = 1, replicate = 2, replicate = 3, and replicate = 4. Thus, if a second call to
experiment with the exact same simList is passed, and replicates = 6, the first 4 will be taken
from the cached copies, and replicate 5 and 6 will be run (and cached) as normal. If notOlderThan
used with a time that is more recent than the cached copy, then a new spades will be done, and
the cached copy will be deleted from the cache repository, so there will only ever be one copy of a

experiment 53

particular replicate for a particular simList. NOTE: caching may not work as desired on a Windows
machine because the sqlite database can only be written to one at a time, so there may be collisions.

Value

Invisibly returns a list of the resulting simList objects from the fully factorial experiment. This list
has an attribute, which a list with 2 elements: the experimental design provided in a wide data.frame
and the experiment values in a long data.frame. There is also a file saved with these two data.frames.
It is named whatever is passed into experimentFile. Since returned list of simList objects may
be large, the user is not obliged to return this object (as it is returned invisibly). Clearly, there may
be objects saved during simulations. This would be determined as per a normal spades call, using
outputs like, say, outputs(sims[[1]]).

Author(s)

Eliot McIntire

See Also

simInit

Examples

if (interactive()) {
library(igraph) # use %>% in a few examples
library(raster)

tmpdir <- file.path(tempdir(), "examples")

Create a default simList object for use through these examples
mySim <- simInit(
times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned"),
Turn off interactive plotting
fireSpread = list(.plotInitialTime = NA),
caribouMovement = list(.plotInitialTime = NA),
randomLandscapes = list(.plotInitialTime = NA)

),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"),

outputPath = tmpdir),
Save final state of landscape and caribou
outputs = data.frame(objectName = c("landscape", "caribou"), stringsAsFactors = FALSE)

)

Example 1 - test alternative parameter values
Create an experiment - here, 2 x 2 x 2 (2 levels of 2 params in fireSpread,
and 2 levels of 1 param in caribouMovement)

Here is a list of alternative values for each parameter. They are length one
numerics here -- e.g., list(0.2, 0.23) for spreadprob in fireSpread module,

54 experiment

but they can be anything, as long as it is a list.
experimentParams <- list(fireSpread = list(spreadprob = list(0.2, 0.23),

nfires = list(20, 10)),
caribouMovement = list(N = list(100, 1000)))

sims <- experiment(mySim, params = experimentParams)

see experiment:
attr(sims, "experiment")

Read in outputs from sims object
fireMaps <- do.call(stack, lapply(1:NROW(attr(sims, "experiment")$expDesign),

function(x) sims[[x]]$landscape$fires))
if (interactive()) Plot(fireMaps, new = TRUE)

Or reload objects from files, useful if sim objects too large to store in RAM
caribouMaps <- lapply(sims, function(sim) {

caribou <- readRDS(outputs(sim)$file[outputs(sim)$objectName == "caribou"])
})
names(caribouMaps) <- paste0("caribou", 1:8)
Plot whole named list
if (interactive()) Plot(caribouMaps, size = 0.1)

Example 2 - test alternative modules
Example of changing modules, i.e., caribou with and without fires
Create an experiment - here, 2 x 2 x 2 (2 levels of 2 params in fireSpread,
and 2 levels of 1 param in caribouMovement)
experimentModules <- list(

c("randomLandscapes", "fireSpread", "caribouMovement"),
c("randomLandscapes", "caribouMovement"))

sims <- experiment(mySim, modules = experimentModules)
attr(sims, "experiment")$expVals # shows 2 alternative experiment levels

Example 3 - test alternative parameter values and modules
Note, this isn't fully factorial because all parameters are not
defined inside smaller module list
sims <- experiment(mySim, modules = experimentModules, params = experimentParams)
attr(sims, "experiment")$expVals # shows 10 alternative experiment levels

Example 4 - manipulate manipulate directory names -
"simNum" is special value for dirPrefix, it is converted to 1, 2, ...
sims <- experiment(mySim, params = experimentParams, dirPrefix = c("expt", "simNum"))
attr(sims, "experiment")$expVals # shows 8 alternative experiment levels, 24 unique

parameter values

Example 5 - doing replicate runs -
sims <- experiment(mySim, replicates = 2)
attr(sims, "experiment")$expDesign # shows 2 replicates of same experiment

Example 6 - doing replicate runs, but within a sub-directory
sims <- experiment(mySim, replicates = 2, dirPrefix = c("expt"))
lapply(sims, outputPath) # shows 2 replicates of same experiment, within a sub directory

experiment 55

Example 7 - doing replicate runs, of a complex, non factorial experiment.
Here we do replication, parameter variation, and module variation all together.
This creates 20 combinations.
The experiment function tries to make fully factorial, but won't
if all the levels don't make sense. Here, changing parameter values
in the fireSpread module won't affect the simulation when the fireSpread
module is not loaded:

library(raster)
beginCluster(20) # if you have multiple clusters available, use them here to save time
sims <- experiment(mySim, replicates = 2, params = experimentParams,

modules = experimentModules,
dirPrefix = c("expt", "simNum"))

endCluster() # end the clusters
attr(sims, "experiment")

Example 8 - Use replication to build a probability map.
For this to be meaningful, we need to provide a fixed input landscape,
not a randomLandscape for each experiment level. So requires 2 steps.
Step 1 - run randomLandscapes module twice to get 2 randomly
generated landscape maps. We will use 1 right away, and we will
use the two further below
mySimRL <- simInit(
times = list(start = 0.0, end = 0.1, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape"),
Turn off interactive plotting
randomLandscapes = list(.plotInitialTime = NA)

),
modules = list("randomLandscapes"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"),

outputPath = file.path(tmpdir, "landscapeMaps1")),
outputs = data.frame(objectName = "landscape", saveTime = 0, stringsAsFactors = FALSE)

)
Run it twice to get two copies of the randomly generated landscape
mySimRLOut <- experiment(mySimRL, replicate = 2)

extract one of the random landscapes, which will be passed into next as an object
landscape <- mySimRLOut[[1]]$landscape

here we don't run the randomLandscapes module; instead we pass in a landscape
as an object, i.e., a fixed input
mySimNoRL <- simInit(
times = list(start = 0.0, end = 1, timeunit = "year"), # only 1 year to save time
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned"),
Turn off interactive plotting
fireSpread = list(.plotInitialTime = NA),
caribouMovement = list(.plotInitialTime = NA)

),
modules = list("fireSpread", "caribouMovement"), # No randomLandscapes modules
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"),

outputPath = tmpdir),

56 experiment

objects = c("landscape"), # Pass in the object here
Save final state (the default if saveTime is not specified) of landscape and caribou
outputs = data.frame(objectName = c("landscape", "caribou"), stringsAsFactors = FALSE)

)

Put outputs into a specific folder to keep them easy to find
outputPath(mySimNoRL) <- file.path(tmpdir, "example8")
sims <- experiment(mySimNoRL, replicates = 8) # Run experiment
attr(sims, "experiment") # shows the experiment, which in this case is just replicates

list all files that were saved called 'landscape'
landscapeFiles <- dir(outputPath(mySimNoRL), recursive = TRUE, pattern = "landscape",

full.names = TRUE)

Can read in fires layers from disk since they were saved, or from the sims
object
fires <- lapply(sims, function(x) x$landscape$fires) %>% stack
fires <- lapply(landscapeFiles, function(x) readRDS(x)$fires) %>% stack()
fires[fires > 0] <- 1 # convert to 1s and 0s
fireProb <- sum(fires) / nlayers(fires) # sum them and convert to probability
if (interactive()) Plot(fireProb, new = TRUE)

Example 9 - Pass in inputs, i.e., input data objects taken from disk
Here, we, again, don't provide randomLandscapes module, so we need to
provide an input stack called lanscape. We point to the 2 that we have
saved to disk in Example 8
mySimInputs <- simInit(
times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned"),
Turn off interactive plotting
fireSpread = list(.plotInitialTime = NA),
caribouMovement = list(.plotInitialTime = NA)

),
modules = list("fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"),

outputPath = tmpdir),
Save final state of landscape and caribou
outputs = data.frame(objectName = c("landscape", "caribou"), stringsAsFactors = FALSE)

)
landscapeFiles <- dir(tmpdir, pattern = "landscape_year0", recursive = TRUE, full.names = TRUE)

Varying inputs files - This could be combined with params, modules, replicates also
outputPath(mySimInputs) <- file.path(tmpdir, "example9")
sims <- experiment(mySimInputs,

inputs = lapply(landscapeFiles, function(filenames) {
data.frame(file = filenames, loadTime = 0,

objectName = "landscape",
stringsAsFactors = FALSE)

})
)

load in experimental design object

extractURL 57

experiment <- load(file = file.path(tmpdir, "example9", "experiment.RData")) %>% get()
print(experiment) # shows input files and details

Example 10 - Use a very simple output dir name using substrLength = 0,
i.e., just the simNum is used for outputPath of each spades call
outputPath(mySim) <- file.path(tmpdir, "example10")
sims <- experiment(mySim, modules = experimentModules, replicates = 2,

substrLength = 0)
lapply(sims, outputPath) # shows that the path is just the simNum
experiment <- load(file = file.path(tmpdir, "example10", "experiment.RData")) %>% get()
print(experiment) # shows input files and details

Example 11 - use clearSimEnv = TRUE to remove objects from simList
This will shrink size of return object, which may be useful because the
return from experiment function may be a large object (it is a list of
simLists). To see size of a simList, you have to look at the objects
contained in the envir(simList). These can be obtained via objs(sim)
sapply(sims, function(x) object.size(objs(x))) %>% sum + object.size(sims)
around 3 MB
rerun with clearSimEnv = TRUE
sims <- experiment(mySim, modules = experimentModules, replicates = 2,

substrLength = 0, clearSimEnv = TRUE)
sapply(sims, function(x) object.size(objs(x))) %>% sum + object.size(sims)
around 250 kB, i.e., all the simList contents except the objects.

Example 12 - pass in objects
experimentObj <- list(landscape = lapply(landscapeFiles, readRDS) %>%

setNames(paste0("landscape", 1:2)))
Pass in this list of landscape objects
sims <- experiment(mySimNoRL, objects = experimentObj)

Remove all temp files
unlink(tmpdir, recursive = TRUE)

}

extractURL Extract a url from module metadata

Description

This will get the sourceURL for the object named.

Usage

extractURL(objectName, sim, module)

S4 method for signature 'character,missing'
extractURL(objectName, sim, module)

S4 method for signature 'character,simList'
extractURL(objectName, sim, module)

58 fileName

Arguments

objectName A character string of the object name in the metadata.

sim A simList object from which to extract the sourceURL

module An optional character string of the module name whose metadata is to be used.
If omitted, the function will use the currentModule(sim), if defined.

Value

The url.

Author(s)

Eliot McIntire

fileName Extract filename (without extension) of a file

Description

Extract filename (without extension) of a file

Usage

fileName(x)

Arguments

x List or character vector

Value

A character vector.

Author(s)

Eliot McIntire

getModuleVersion 59

getModuleVersion Find the latest module version from a SpaDES module repository

Description

Modified from http://stackoverflow.com/a/25485782/1380598.

Usage

getModuleVersion(name, repo)

S4 method for signature 'character,character'
getModuleVersion(name, repo)

S4 method for signature 'character,missing'
getModuleVersion(name)

Arguments

name Character string giving the module name.

repo GitHub repository name, specified as "username/repo". Default is "PredictiveEcology/SpaDES-modules",
which is specified by the global option spades.moduleRepo. Only master
branches can be used at this point.

Details

getModuleVersion extracts a module’s most recent version by looking at the module ‘.zip’ files
contained in the module directory. It takes the most recent version, based on the name of the zip
file.

See the modules vignette for details of module directory structure (http://spades-core.predictiveecology.
org/articles/ii-modules.html#module-directory-structure-modulename), and see our SpaDES-
modules repo for details of module repository structure (https://github.com/PredictiveEcology/
SpaDES-modules).

Author(s)

Alex Chubaty

See Also

zipModule for creating module ‘.zip’ folders.

http://stackoverflow.com/a/25485782/1380598
http://spades-core.predictiveecology.org/articles/ii-modules.html#module-directory-structure-modulename
http://spades-core.predictiveecology.org/articles/ii-modules.html#module-directory-structure-modulename
https://github.com/PredictiveEcology/SpaDES-modules
https://github.com/PredictiveEcology/SpaDES-modules

60 globals

globals Get and set simulation globals.

Description

globals, and the alias G, accesses or sets the "globals" in the simList. This currently is not an
explicit slot in the simList, but it is a .globals element in the params slot of the simList.

Usage

globals(sim)

S4 method for signature 'simList'
globals(sim)

globals(sim) <- value

S4 replacement method for signature 'simList'
globals(sim) <- value

G(sim)

S4 method for signature 'simList'
G(sim)

G(sim) <- value

S4 replacement method for signature 'simList'
G(sim) <- value

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

value The object to be stored at the slot.

See Also

SpaDES.core-package, specifically the section 1.2.1 on Simulation Parameters.

Other functions to access elements of a simList object: .addDepends, doEvent.checkpoint,
envir, events, inputs, modules, objs, packages, params, paths, progressInterval, times

initialize,simList-method 61

initialize,simList-method

Generate a simList object

Description

Given the name or the definition of a class, plus optionally data to be included in the object, new
returns an object from that class.

Given the name or the definition of a class, plus optionally data to be included in the object, new
returns an object from that class.

Usage

S4 method for signature 'simList'
initialize(.Object, ...)

S4 method for signature 'simList_'
initialize(.Object, ...)

Arguments

.Object A simList object.

... Optional Values passed to any or all slot

inputObjects Metadata accessors

Description

These accessors extract the metadata for a module (if specified) or all modules in a simList if not
specified.

Usage

inputObjects(sim, module)

S4 method for signature 'simList'
inputObjects(sim, module)

outputObjects(sim, module)

S4 method for signature 'simList'
outputObjects(sim, module)

reqdPkgs(sim, module)

62 inputs

S4 method for signature 'simList'
reqdPkgs(sim, module)

documentation(sim, module)

S4 method for signature 'simList'
documentation(sim, module)

citation(package, lib.loc = NULL, auto = NULL, module = character())

S4 method for signature 'simList'
citation(package, lib.loc = NULL, auto = NULL,
module = character())

S4 method for signature 'character'
citation(package, lib.loc = NULL, auto = NULL,
module = character())

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

module Optional character string indicating which module params should come from.

package For compatibility with citation. This can be a simList or a character string
for a package name.

lib.loc a character vector with path names of R libraries, or the directory containing the
source for package, or NULL. The default value of NULL corresponds to all li-
braries currently known. If the default is used, the loaded packages are searched
before the libraries.

auto a logical indicating whether the default citation auto-generated from the package
‘DESCRIPTION’ metadata should be used or not, or NULL (default), indicating that
a ‘CITATION’ file is used if it exists, or an object of class "packageDescription"
with package metadata (see below).

inputs Inputs and outputs

Description

These functions are one of three mechanisms to add the information about which input files to
load in a spades call and the information about which output files to save. 1) As arguments to a
simInit call. Specifically, inputs or outputs. See ?simInit. 2) With the inputs(simList) or
outputs(simList) function call. 3) By adding a function called .inputObjects inside a module,
which will be executed during the simInit call. This last way is the most "modular" way to create
default data sets for your model. See below for more details.

inputs 63

Usage

inputs(sim)

S4 method for signature 'simList'
inputs(sim)

inputs(sim) <- value

S4 replacement method for signature 'simList'
inputs(sim) <- value

outputs(sim)

S4 method for signature 'simList'
outputs(sim)

outputs(sim) <- value

S4 replacement method for signature 'simList'
outputs(sim) <- value

inputArgs(sim)

S4 method for signature 'simList'
inputArgs(sim)

inputArgs(sim) <- value

S4 replacement method for signature 'simList'
inputArgs(sim) <- value

outputArgs(sim)

S4 method for signature 'simList'
outputArgs(sim)

outputArgs(sim) <- value

S4 replacement method for signature 'simList'
outputArgs(sim) <- value

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

value The object to be stored at the slot. See Details.

64 inputs

Details

Accessor functions for the inputs and outputs slots in a simList object.

Value

Returns or sets the value(s) of the input or output slots in the simList object.

inputs function or argument in simInit

inputs accepts a data.frame, with up to 7 columns. Columns are:

file required, a character string indicating the file path. There is no default.
objectName optional, character string indicating the name of the object that the loaded file will be assigned to in the simList. This object can therefore be accessed with sim$xxx in any module, where objectName = "xxx". Defaults to the filename without file extension or directory information.
fun optional, a character string indicating the function to use to load that file. Defaults to the known extensions in SpaDES (found by examining .fileExtensions()). The package and fun can be jointly specified here as "packageName::functionName", e.g., "raster::raster".
package optional character string indicating the package in which to find the fun);
loadTime optional numeric, indicating when in simulation time the file should be loaded. The default is the highest priority at start(sim), i.e., at the very start.
interval optional numeric, indicating at what interval should this same exact file be reloaded from disk, e.g,. 10 would mean every 10 time units. The default is NA or no interval, i.e, load the file only once as described in loadTime
arguments is a list of lists of named arguments, one list for each fun. For example, if fun="raster", arguments = list(native = TRUE) will pass the argument "native = TRUE" to raster. If there is only one list, then it is assumed to apply to all files and will be recycled as per normal R rules of recycling for each fun.

Currently, only file is required. All others will be filled with defaults if not specified.

See the modules vignette for more details (browseVignettes("SpaDES.core")).

.inputObjects function placed inside module

Any code placed inside a function called .inputObjects will be run during simInit() for the pur-
pose of creating any objects required by this module, i.e., objects identified in the inputObjects
element of defineModule. This is useful if there is something required before simulation to pro-
duce the module object dependencies, including such things as downloading default datasets, e.g.,
downloadData('LCC2005', modulePath(sim)). Nothing should be created here that does not
create an named object in inputObjects. Any other initiation procedures should be put in the "init"
eventType of the doEvent function. Note: the module developer can use ’sim$.userSuppliedObjNames’
inside the function to selectively skip unnecessary steps because the user has provided those in-
putObjects in the simInit call. e.g., the following code would look to see if the user had passed
defaultColor into during simInit. If the user had done this, then this function would not override
that value with ’red’. If the user has not passed in a value for defaultColor, then the module will
get it here:

if (!('defaultColor' %in% sim$.userSuppliedObjNames)) { sim$defaultColor <- 'red'
}

outputs function or argument in simInit

outputs accepts a data.frame similar to the inputs data.frame, but with up to 6 columns.

objectName required, character string indicating the name of the object in the simList that will be saved to disk (without the sim$ prefix).
file optional, a character string indicating the file path to save to. The default is to concatenate objectName with the model timeunit and saveTime, separated by underscore, ’_’. So a default filename would be "Fires_year1.rds".
fun optional, a character string indicating the function to use to save that file. The default is saveRDS
package optional character string indicating the package in which to find the fun);

inputs 65

saveTime optional numeric, indicating when in simulation time the file should be saved. The default is the lowest priority at end(sim), i.e., at the very end.
arguments is a list of lists of named arguments, one list for each fun. For example, if fun = "write.csv", arguments = list(row.names = TRUE) will pass the argument row.names = TRUE to write.csv If there is only one list, then it is assumed to apply to all files and will be recycled as per normal R rules of recycling for each fun.

See the modules vignette for more details (browseVignettes("SpaDES.core")).

Note

The automatic file type handling only adds the correct extension from a given fun and package. It
does not do the inverse, from a given extension find the correct fun and package.

See Also

SpaDES.core-package, specifically the section 1.2.2 on loading and saving.

Other functions to access elements of a simList object: .addDepends, doEvent.checkpoint,
envir, events, globals, modules, objs, packages, params, paths, progressInterval, times

Examples

#######################
inputs
#######################

Start with a basic empty simList
sim <- simInit()

test <- 1:10
library(igraph) # for %>%
library(reproducible) # for checkPath
tmpdir <- file.path(tempdir(), "inputs") %>% checkPath(create = TRUE)
tmpFile <- file.path(tmpdir, "test.rds")
saveRDS(test, file = tmpFile)
inputs(sim) <- data.frame(file = tmpFile) # using only required column, "file"
inputs(sim) # see that it is not yet loaded, but when it is scheduled to be loaded
simOut <- spades(sim)
inputs(simOut) # confirm it was loaded
simOut$test

can put data.frame for inputs directly inside simInit call
allTifs <- dir(system.file("maps", package = "quickPlot"),

full.names = TRUE, pattern = "tif")

next: .objectNames are taken from the filenames (without the extension)
This will load all 5 tifs in the SpaDES sample directory, using
the raster fuction in the raster package, all at time = 0
if (require("rgdal", quietly = TRUE)) {

sim <- simInit(
inputs = data.frame(

files = allTifs,
functions = "raster",
package = "raster",

66 inputs

loadTime = 0,
stringsAsFactors = FALSE)

)

##############################
#A fully described inputs object, including arguments:
files <- dir(system.file("maps", package = "quickPlot"),

full.names = TRUE, pattern = "tif")
arguments must be a list of lists. This may require I() to keep it as a list
once it gets coerced into the data.frame.
arguments = I(rep(list(native = TRUE), length(files)))
filelist = data.frame(

objectName = paste0("Maps", 1:5),
files = files,
functions = "raster::raster",
arguments = arguments,
loadTime = 0,
intervals = c(rep(NA, length(files) - 1), 10)

)
inputs(sim) <- filelist
spades(sim)

}

Example showing loading multiple objects from global environment onto the
same object in the simList, but at different load times
a1 <- 1
a2 <- 2
Note arguments must be a list of NROW(inputs), with each element itself being a list,
which is passed to do.call(fun[x], arguments[[x]]), where x is row number, one at a time
args <- lapply(1:2, function(x) {

list(x = paste0("a", x),
envir = environment()) # may be necessary to specify in which envir a1, a2

are located, if not in an interactive sessino
})

inputs <- data.frame(objectName = "a", loadTime = 1:2, fun = "base::get", arguments = I(args))
a <- simInit(inputs = inputs, times = list(start = 0, end = 1))
a <- spades(a)
identical(a1, a$a)

end(a) <- 3
a <- spades(a) # different object (a2) loaded onto a$a
identical(a2, a$a)

Clean up after
unlink(tmpdir, recursive = TRUE)

#######################
outputs
#######################

library(igraph) # for %>%
tmpdir <- file.path(tempdir(), "outputs") %>% checkPath(create = TRUE)
tmpFile <- file.path(tmpdir, "temp.rds")

inputs 67

tempObj <- 1:10

Can add data.frame of outputs directly into simInit call
sim <- simInit(objects = c("tempObj"),

outputs = data.frame(objectName = "tempObj"),
paths = list(outputPath = tmpdir))

outputs(sim) # To see what will be saved, when, what filename
sim <- spades(sim)
outputs(sim) # To see that it was saved, when, what filename

Also can add using assignment after a simList object has been made
sim <- simInit(objects = c("tempObj"), paths = list(outputPath = tmpdir))
outputs(sim) <- data.frame(objectName = "tempObj", saveTime = 1:10)
sim <- spades(sim)
outputs(sim) # To see that it was saved, when, what filename.

can do highly variable saving
tempObj2 <- paste("val",1:10)
df1 <- data.frame(col1 = tempObj, col2 = tempObj2)
sim <- simInit(objects = c("tempObj", "tempObj2", "df1"),

paths=list(outputPath = tmpdir))
outputs(sim) = data.frame(

objectName = c(rep("tempObj", 2), rep("tempObj2", 3), "df1"),
saveTime = c(c(1,4), c(2,6,7), end(sim)),
fun = c(rep("saveRDS", 5), "write.csv"),
package = c(rep("base", 5), "utils"),
stringsAsFactors = FALSE)

since write.csv has a default of adding a column, x, with rownames, must add additional
argument for 6th row in data.frame (corresponding to the write.csv function)
outputArgs(sim)[[6]] <- list(row.names=FALSE)
sim <- spades(sim)
outputs(sim)

read one back in just to test it all worked as planned
newObj <- read.csv(dir(tmpdir, pattern = "year10.csv", full.name = TRUE))
newObj

using saving with SpaDES-aware methods
To see current ones SpaDES can do
.saveFileExtensions()

library(raster)
if (require(rgdal)) {

ras <- raster(ncol = 4, nrow = 5)
ras[] <- 1:20

sim <- simInit(objects = c("ras"), paths = list(outputPath = tmpdir))
outputs(sim) = data.frame(
file = "test",
fun = "writeRaster",
package = "raster",
objectName = "ras",
stringsAsFactors = FALSE)

68 inSeconds

outputArgs(sim)[[1]] <- list(format = "GTiff") # see ?raster::writeFormats
simOut <- spades(sim)
outputs(simOut)
newRas <- raster(dir(tmpdir, full.name = TRUE, pattern = ".tif"))
all.equal(newRas, ras) # Should be TRUE

}
Clean up after
unlink(tmpdir, recursive = TRUE)

inSeconds Convert time units

Description

In addition to using the lubridate package, some additional functions to work with times are
provided.
This function takes a numeric with a "unit" attribute and converts it to another numeric with a dif-
ferent time attribute. If the units passed to argument units are the same as attr(time, "unit"),
then it simply returns input time.

Usage

inSeconds(unit, envir, skipChecks = FALSE)

convertTimeunit(time, unit, envir, skipChecks = FALSE)

.spadesTimes

spadesTimes()

checkTimeunit(unit, envir)

S4 method for signature 'character,missing'
checkTimeunit(unit, envir)

S4 method for signature 'character,environment'
checkTimeunit(unit, envir)

Arguments

unit Character. One of the time units used in SpaDES or user defined time unit, given
as the unit name only. See details.

envir An environment. This is where to look up the function definition for the time
unit. See details.

skipChecks For speed, the internal checks for classes and missingness can be skipped. De-
fault FALSE.

time Numeric. With a unit attribute, indicating the time unit of the input numeric.
See Details.

loadPackages 69

Format

An object of class character of length 12.

Details

Current pre-defined units are found within the spadesTimes() function. The user can define a new
unit. The unit name can be anything, but the function definition must be of the form "dunitName",
e.g., dyear or dfortnight. The unit name is the part without the d and the function name definition
includes the d. This new function, e.g., dfortnight <- function(x) lubridate::duration(dday(14))
can be placed anywhere in the search path or in a module.

Because of R scoping, if envir is a simList environment, then this function will search there first,
then up the current search() path. Thus, it will find a user defined or module defined unit before a
SpaDES unit. This means that a user can override the dyear given in SpaDES, for example, which
is 365.25 days, with dyear <- function(x) lubridate::duration(dday(365)).

If time has no unit attribute, then it is assumed to be seconds.

Value

A numeric vector of length 1, with unit attribute set to "seconds".

Author(s)

Alex Chubaty & Eliot McIntire

Eliot McIntire

loadPackages Load packages.

Description

Load and optionally install additional packages.

Usage

loadPackages(packageList, install = FALSE, quiet = TRUE)

S4 method for signature 'character'
loadPackages(packageList, install = FALSE,
quiet = TRUE)

S4 method for signature 'list'
loadPackages(packageList, install = FALSE,
quiet = TRUE)

S4 method for signature '`NULL`'
loadPackages(packageList, install = FALSE,
quiet = TRUE)

70 makeMemoisable.simList

Arguments

packageList A list of character strings specifying the names of packages to be loaded.

install Logical flag. If required packages are not already installed, should they be in-
stalled?

quiet Logical flag. Should the final "packages loaded" message be suppressed?

Value

Specified packages are loaded and attached using require(), invisibly returning a logical vector of
successes.

Author(s)

Alex Chubaty

See Also

require.

Examples

Not run:
pkgs <- list("raster", "lme4")
loadPackages(pkgs) # loads packages if installed
loadPackages(pkgs, install = TRUE) # loads packages after installation (if needed)

End(Not run)

makeMemoisable.simList

Make simList correctly work with memoise

Description

Because of the environment slot, simList objects don’t correctly memoise a simList. This method
for simList converts the object to a simList_ first.

Usage

S3 method for class 'simList'
makeMemoisable(x)

S3 method for class 'simList_'
unmakeMemoisable(x)

maxTimeunit 71

Arguments

x An object to make memoisable. See individual methods in other packages.

Value

A simList_ object or a simList, in the case of unmakeMemoisable.

See Also

makeMemoisable

maxTimeunit Determine the largest timestep unit in a simulation

Description

Determine the largest timestep unit in a simulation

Usage

maxTimeunit(sim)

S4 method for signature 'simList'
maxTimeunit(sim)

Arguments

sim A simList simulation object.

Value

The timeunit as a character string. This defaults to NA if none of the modules has explicit units.

Author(s)

Eliot McIntire and Alex Chubaty

72 moduleCoverage

minTimeunit Determine the smallest timeunit in a simulation

Description

When modules have different timeunit, SpaDES automatically takes the smallest (e.g., "second") as
the unit for a simulation.

Usage

minTimeunit(sim)

S4 method for signature 'simList'
minTimeunit(sim)

S4 method for signature 'list'
minTimeunit(sim)

Arguments

sim A simList simulation object.

Value

The timeunit as a character string. This defaults to "second" if none of the modules has explicit
units.

Author(s)

Eliot McIntire

moduleCoverage Calculate module coverage of unit tests

Description

Calculate the test coverage by unit tests for the module and its functions.

Usage

moduleCoverage(name, path)

S4 method for signature 'character,character'
moduleCoverage(name, path)

S4 method for signature 'character,missing'
moduleCoverage(name)

moduleCoverage 73

Arguments

name Character string. The module’s name.

path Character string. The path to the module directory (default is the current work-
ing directory).

Value

Return a list of two coverage objects and two data.table objects. The two coverage objects are
named ‘moduleCoverage‘ and ‘functionCoverage‘. The ‘moduleCoverage‘ object contains the per-
cent value of unit test coverage for the module. The ‘functionCoverage‘ object contains percentage
values for unit test coverage for each function defined in the module. Please use report to view the
coverage information. Two data.tables give the information of all the tested and untested functions
in the module.

Note

When running this function, the test files must be strictly placed in the ‘tests/testthat/’ direc-
tory under module path. To automatically generate this folder, please set unitTests = TRUE when
creating a new module using newModule. To accurately test your module, the test filename must
follow the format test-functionName.R.

Author(s)

Yong Luo

See Also

newModule.

Examples

Not run:
library(igraph) # for %>%
library(SpaDES.core)
tmpdir <- file.path(tempdir(), "coverage")
modulePath <- file.path(tmpdir, "Modules") %>% checkPath(create = TRUE)
moduleName <- "forestAge" # sample module to test
downloadModule(name = moduleName, path = modulePath) # download sample module
testResults <- moduleCoverage(name = moduleName, path = modulePath)
report(testResults$moduleCoverage)
report(testResults$functionCoverage)
unlink(tmpdir, recursive = TRUE)

End(Not run)

74 moduleDiagram

moduleDefaults Defaults values used in defineModule

Description

Where individual elements are missing in defineModule, these defaults will be used.

Usage

moduleDefaults

Format

An object of class list of length 12.

moduleDiagram Simulation module dependency diagram

Description

Create a network diagram illustrating the simplified module dependencies of a simulation. Of-
fers a less detailed view of specific objects than does plotting the depsEdgeList directly with
objectDiagram.

Usage

moduleDiagram(sim, type, showParents, ...)

S4 method for signature 'simList,character,logical'
moduleDiagram(sim, type, showParents,
...)

S4 method for signature 'simList,missing,ANY'
moduleDiagram(sim, type, showParents, ...)

Arguments

sim A simList object (typically corresponding to a completed simulation).

type Character string, either "rgl" for igraph::rglplot or "tk" for igraph::tkplot.
Default missing, which uses regular plot.

showParents Logical. If TRUE, then any children that are grouped into parent modules will
be grouped together by colored blobs. Internally, this is calling moduleGraph.
Default FALSE.

... Additional arguments passed to plotting function specified by type.

moduleGraph 75

Value

Plots module dependency diagram.

Author(s)

Alex Chubaty

See Also

igraph, moduleGraph for a version that accounts for parent and children module structure.

moduleGraph Build a module dependency graph

Description

This is still experimental, but this will show the hierarchical structure of parent and children modules
and return a list with an igraph object and an igraph communities object, showing the groups.
Currently only tested with relatively simple structures.

Usage

moduleGraph(sim, plot, ...)

S4 method for signature 'simList,logical'
moduleGraph(sim, plot, ...)

S4 method for signature 'simList,missing'
moduleGraph(sim, plot, ...)

Arguments

sim A simList object.

plot Logical indicating whether the edgelist (and subsequent graph) will be used for
plotting. If TRUE, duplicated rows (i.e., multiple object dependencies between
modules) are removed so that only a single arrow is drawn connecting the mod-
ules. Default is FALSE.

... Arguments passed to Plot

Value

A list with 2 elements, an igraph object and an igraph communities object.

Author(s)

Eliot McIntire

76 moduleMetadata

See Also

moduleDiagram

moduleMetadata Parse and extract module metadata

Description

Parse and extract module metadata

Usage

moduleMetadata(sim, module, path)

S4 method for signature 'missing,character,character'
moduleMetadata(module, path)

S4 method for signature 'missing,character,missing'
moduleMetadata(module)

S4 method for signature 'ANY,ANY,ANY'
moduleMetadata(sim, module, path)

Arguments

sim A simList simulation object, generally produced by simInit.

module Character string. Your module’s name.

path Character string specifying the file path to modules directory. Default is to use
the spades.modulePath option.

Value

A list of module metadata, matching the structure in defineModule.

Author(s)

Alex Chubaty

See Also

defineModule

modules 77

Examples

path <- system.file("sampleModules", package = "SpaDES.core")
sampleModules <- dir(path)
turn off code checking -- don't need it here
opts <- options("spades.moduleCodeChecks" = FALSE,

"spades.useRequire" = FALSE)

x <- moduleMetadata(sampleModules[3], path = path)

using simList
mySim <- simInit(

times = list(start = 2000.0, end = 2001.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape")
),
modules = list("caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"))

)
moduleMetadata(sim = mySim)

turn code checking back on -- don't need it here
options(opts)

modules Simulation modules and dependencies

Description

Accessor functions for the depends and modules slots in a simList object. These are included for
advanced users.

depends List of simulation module dependencies. (advanced)
modules List of simulation modules to be loaded. (advanced)
inputs List of loaded objects used in simulation. (advanced)

Usage

modules(sim, hidden = FALSE)

S4 method for signature 'simList'
modules(sim, hidden = FALSE)

modules(sim) <- value

S4 replacement method for signature 'simList'
modules(sim) <- value

78 moduleVersion

depends(sim)

S4 method for signature 'simList'
depends(sim)

depends(sim) <- value

S4 replacement method for signature 'simList'
depends(sim) <- value

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

hidden Logical. If TRUE, show the default core modules.

value The object to be stored at the slot.

Details

Currently, only get and set methods are defined. Subset methods are not.

Value

Returns or sets the value of the slot from the simList object.

Author(s)

Alex Chubaty

See Also

SpaDES.core-package, specifically the section 1.2.7 on Modules and dependencies.

Other functions to access elements of a simList object: .addDepends, doEvent.checkpoint,
envir, events, globals, inputs, objs, packages, params, paths, progressInterval, times

moduleVersion Parse and extract a module’s version

Description

Parse and extract a module’s version

moduleVersion 79

Usage

moduleVersion(module, path, sim, envir = NULL)

S4 method for signature 'character,character,missing'
moduleVersion(module, path, envir)

S4 method for signature 'character,missing,missing'
moduleVersion(module, envir)

S4 method for signature 'character,missing,simList'
moduleVersion(module, sim, envir)

Arguments

module Character string. Your module’s name.

path Character string specifying the file path to modules directory. Default is to use
the spades.modulePath option.

sim A simList simulation object, generally produced by simInit.

envir Optional environment in which to store parsed code. This may be useful if the
same file is being parsed multiple times. This function will check in that envir
for the parsed file before parsing again. If the envir is transient, then this will
have no effect.

Value

numeric_version indicating the module’s version.

Author(s)

Alex Chubaty

See Also

moduleMetadata

Examples

path <- system.file("sampleModules", package = "SpaDES.core")

using filepath
moduleVersion("caribouMovement", path)

using simList
mySim <- simInit(

times = list(start = 2000.0, end = 2002.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")
),
modules = list("caribouMovement"),

80 newModule

paths = list(modulePath = path)
)
moduleVersion("caribouMovement", sim = mySim)

newModule Create new module from template

Description

Autogenerate a skeleton for a new SpaDES module, a template for a documentation file, a cita-
tion file, a license file, a ‘README.txt’ file, and a folder that contains unit tests information. The
newModuleDocumentation will not generate the module file, but will create the other files.

Usage

newModule(name, path, ...)

S4 method for signature 'character,character'
newModule(name, path, ...)

S4 method for signature 'character,missing'
newModule(name, path, ...)

Arguments

name Character string specifying the name of the new module.

path Character string. Subdirectory in which to place the new module code file. The
default is the current working directory.

... Additional arguments. Currently, only the following are supported:

open. Logical. Should the new module file be opened after creation? Default
TRUE.

unitTests. Logical. Should the new module include unit test files? Default
TRUE. Unit testing relies on the testthat package.

type. Character string specifying one of "child" (default), or "parent".

children. Required when type = "parent". A character vector specifying
the names of child modules.

newModule 81

Details

All files will be created within a subdirectory named name within the path:

• path/

– name/

– R/ # contains additional module R scripts

– data/ # directory for all included data

* CHECKSUMS.txt # contains checksums for data files

– tests/ # contains unit tests for module code

– citation.bib # bibtex citation for the module

– LICENSE.txt # describes module's legal usage

– README.txt # provide overview of key aspects

– name.R # module code file (incl. metadata)

– name.Rmd # documentation, usage info, etc.

Value

Nothing is returned. The new module file is created at ‘path/name.R’, as well as ancillary files for
documentation, citation, ‘LICENSE’, ‘README’, and ‘tests’ directory.

Note

On Windows there is currently a bug in RStudio that prevents the editor from opening when
file.edit is called. Similarly, in RStudio on macOS, there is an issue opening files where they are
opened in an overlayed window rather than a new tab. file.edit does work if the user types it at
the command prompt. A message with the correct lines to copy and paste is provided.

Author(s)

Alex Chubaty and Eliot McIntire

See Also

Other module creation helpers: newModuleCode, newModuleDocumentation, newModuleTests

Examples

Not run:
create a "myModule" module in the "modules" subdirectory.
newModule("myModule", "modules")

create a new parent module in the "modules" subdirectory.
newModule("myParentModule", "modules", type = "parent", children = c("child1", "child2"))

End(Not run)

82 newModuleDocumentation

newModuleCode Create new module code file

Description

Create new module code file

Usage

newModuleCode(name, path, open, type, children)

S4 method for signature 'character,character,logical,character,character'
newModuleCode(name,
path, open, type, children)

Arguments

name Character string specifying the name of the new module.

path Character string. Subdirectory in which to place the new module code file. The
default is the current working directory.

open Logical. Should the new module file be opened after creation? Default TRUE.

type Character string specifying one of "child" (default), or "parent".

children Required when type = "parent". A character vector specifying the names of
child modules.

Author(s)

Eliot McIntire and Alex Chubaty

See Also

Other module creation helpers: newModuleDocumentation, newModuleTests, newModule

newModuleDocumentation

Create new module documentation

Description

Create new module documentation

newModuleTests 83

Usage

newModuleDocumentation(name, path, open, type, children)

S4 method for signature 'character,character,logical,character,character'
newModuleDocumentation(name,
path, open, type, children)

S4 method for signature 'character,missing,logical,ANY,ANY'
newModuleDocumentation(name,
open)

S4 method for signature 'character,character,missing,ANY,ANY'
newModuleDocumentation(name,
path)

S4 method for signature 'character,missing,missing,ANY,ANY'
newModuleDocumentation(name)

Arguments

name Character string specifying the name of the new module.

path Character string. Subdirectory in which to place the new module code file. The
default is the current working directory.

open Logical. Should the new module file be opened after creation? Default TRUE.

type Character string specifying one of "child" (default), or "parent".

children Required when type = "parent". A character vector specifying the names of
child modules.

Author(s)

Eliot McIntire and Alex Chubaty

See Also

Other module creation helpers: newModuleCode, newModuleTests, newModule

newModuleTests Create template testing structures for new modules

Description

Create template testing structures for new modules

84 newProgressBar

Usage

newModuleTests(name, path, open)

S4 method for signature 'character,character,logical'
newModuleTests(name, path, open)

Arguments

name Character string specifying the name of the new module.

path Character string. Subdirectory in which to place the new module code file. The
default is the current working directory.

open Logical. Should the new module file be opened after creation? Default TRUE.

Author(s)

Eliot McIntire and Alex Chubaty

See Also

Other module creation helpers: newModuleCode, newModuleDocumentation, newModule

newProgressBar Progress bar

Description

Shows a progress bar that is scaled to simulation end time.

Usage

newProgressBar(sim)

setProgressBar(sim)

Arguments

sim A simList simulation object.

Details

The progress bar object is stored in a separate environment, #’ .pkgEnv.

Author(s)

Alex Chubaty and Eliot McIntire

objectDiagram 85

objectDiagram Simulation object dependency diagram

Description

Create a sequence diagram illustrating the data object dependencies of a simulation. Offers a more
detailed view of specific objects than does plotting the depsEdgeList directly with moduleDiagram.

Usage

objectDiagram(sim, ...)

S4 method for signature 'simList'
objectDiagram(sim, ...)

Arguments

sim A simList object (typically corresponding to a completed simulation).

... Additional arguments passed to mermaid. Useful for specifying height and
width.

Value

Plots a sequence diagram, invisibly returning a mermaid object.

Author(s)

Alex Chubaty

See Also

mermaid.

objectSynonyms Identify synonyms in a simList

Description

This will create active bindings amongst the synonyms. To minimize copying, the first one that
exists in the character vector will become the "canonical" object. All others named in the character
vector will be activeBindings to that canonical one. This synonym list will be assigned to the
envir, as an object named objectSynonyms. That object will have an attribute called, bindings
indicating which one is the canonical one and which is/are the activeBindings. EXPERIMENTAL:
If the objects are removed during a spades call by, say, a module, then at the end of the event, the
spades call will replace the bindings. In other words, if a module deletes the object, it will "come
back". This may not always be desired.

86 objectSynonyms

Usage

objectSynonyms(envir, synonyms)

Arguments

envir An environment, which in the context of SpaDES.core is usually a simList to
find and/or place the objectSynonyms object.

synonyms A list of synonym character vectors, such as list(c("age", "ageMap", "age2"), c("veg", "vegMap"))

Details

This is very experimental and only has minimal tests. Please report if this is not working, and under
what circumstances (e.g., please submit a reproducible example to our issues tracker)

This function will append any new objectSynonym to any pre-existing objectSynonym in the
envir. Similarly, this function assumes transitivity, i.e., if age and ageMap are synonyms, and
ageMap and timeSinceFire are synonyms, then age and timeSinceFire must be synonyms.

Value

Active bindings in the envir so that all synonyms point to the same canonical object, e.g., they
would be at envir[[synonym[[1]][1]]] and envir[[synonym[[1]][2]]], if a list of length one
is passed into synonyms, with a character vector of length two. See examples.

Examples

sim <- simInit()

sim$age <- 1:10;
sim <- objectSynonyms(sim, list(c("age", "ageMap")))

identical(sim$ageMap, sim$age)
sim$age <- 4
identical(sim$ageMap, sim$age)
sim$ageMap <- 2:5
sim$ageMap[3] <- 11
identical(sim$ageMap, sim$age)

Also works to pass it in as an object
objectSynonyms <- list(c("age", "ageMap"))
sim <- simInit(objects = list(objectSynonyms = objectSynonyms))
identical(sim$ageMap, sim$age) # they are NULL at this point
sim$age <- 1:10
identical(sim$ageMap, sim$age) # they are not NULL at this point

More complicated, with 'updating' i.e., you can add new synonyms to previous
sim <- simInit()
os <- list(c("age", "ageMap"), c("vegMap", "veg"), c("studyArea", "studyArea2"))
os2 <- list(c("ageMap", "timeSinceFire", "tsf"),

c("systime", "systime2"),
c("vegMap", "veg"))

objs 87

sim <- objectSynonyms(sim, os)
sim <- objectSynonyms(sim, os2)

check
sim$objectSynonyms

objs Extract or replace an object from the simulation environment

Description

The [[and $ operators provide "shortcuts" for accessing objects in the simulation environment. I.e.,
instead of using envir(sim)$object or envir(sim)[["object"]], one can simply use sim$object
or sim[["object"]].

Usage

objs(sim, ...)

S4 method for signature 'simList'
objs(sim, ...)

objs(sim) <- value

S4 replacement method for signature 'simList'
objs(sim) <- value

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

... passed to ls

value objects to assign to the simList

Details

objs can take ... arguments passed to ls, allowing, e.g. all.names=TRUE objs<- requires takes
a named list of values to be assigned in the simulation environment.

Value

Returns or sets a list of objects in the simList environment.

88 openModules

See Also

SpaDES.core-package, specifically the section 1.2.1 on Simulation Parameters.

Other functions to access elements of a simList object: .addDepends, doEvent.checkpoint,
envir, events, globals, inputs, modules, packages, params, paths, progressInterval, times

objSize.simList Object size for simList

Description

Recursively, runs object.size on the simList environment. Currently, this will not assess object.size
of the other elements.

Usage

S3 method for class 'simList'
objSize(x, quick = getOption("reproducible.quick",
FALSE))

Arguments

x An object

quick Logical. Only some methods use this. e.g., Path class objects. In which case,
file.size will be used instead of object.size.

Examples

a <- simInit(objects = list(d = 1:10, b = 2:20))
objSize(a)
object.size(a)

openModules Open all modules nested within a base directory

Description

This is just a convenience wrapper for opening several modules at once, recursively. A module is
defined as any file that ends in .R or .r and has a directory name identical to its filename. Thus,
this must be case sensitive.

openModules 89

Usage

openModules(name, path)

S4 method for signature 'character,character'
openModules(name, path)

S4 method for signature 'missing,missing'
openModules()

S4 method for signature 'missing,character'
openModules(path)

S4 method for signature 'character,missing'
openModules(name)

S4 method for signature 'simList,missing'
openModules(name)

Arguments

name Character vector with names of modules to open. If missing, then all modules
will be opened within the basedir.

path Character string of length 1. The base directory within which there are only
module subdirectories.

Value

Nothing is returned. All file are open via file.edit.

Note

On Windows there is currently a bug in RStudio that prevents the editor from opening when
file.edit is called. file.edit does work if the user types it at the command prompt. A message
with the correct lines to copy and paste is provided.

Author(s)

Eliot McIntire

Examples

Not run: openModules("~\SpaDESModules")

90 packages

packages Get module or simulation package dependencies

Description

Get module or simulation package dependencies

Usage

packages(sim, modules, paths, filenames, envir, clean = FALSE, ...)

S4 method for signature 'ANY'
packages(sim, modules, paths, filenames, envir,
clean = FALSE, ...)

Arguments

sim A simList object.

modules Character vector, specifying the name or vector of names of module(s)

paths Character vector, specifying the name or vector of names of paths(s) for those
modules. If path not specified, it will be taken from getOption("spades.modulePath"),
which is set with setPaths)

filenames Character vector specifying filenames of modules (i.e. combined path & mod-
ule. If this is specified, then modules and path are ignored.

envir Optional environment in which to store parsed code. This may be useful if the
same file is being parsed multiple times. This function will check in that envir
for the parsed file before parsing again. If the envir is transient, then this will
have no effect.

clean Optional logical. If TRUE, it will scrub any references to github repositories, e.g.,
"PredictiveEcology/reproducible" will be returned as "reproducible"

... All simInit parameters.

Value

A sorted character vector of package names.

Author(s)

Alex Chubaty & Eliot McIntire

See Also

Other functions to access elements of a simList object: .addDepends, doEvent.checkpoint,
envir, events, globals, inputs, modules, objs, params, paths, progressInterval, times

paddedFloatToChar 91

paddedFloatToChar Convert numeric to character with padding

Description

Convert numeric to character with padding

Usage

paddedFloatToChar(x, padL = ceiling(log10(x + 1)), padR = 3,
pad = "0")

Arguments

x numeric. Number to be converted to character with padding

padL numeric. Desired number of digits on left side of decimal. If not enough, pad
will be used to pad.

padR numeric. Desired number of digits on right side of decimal. If not enough, pad
will be used to pad.

pad character to use as padding (nchar(pad) == 1 must be TRUE). Passed to stri_pad

Value

Character string representing the filename.

Author(s)

Eliot McIntire and Alex Chubaty

Examples

paddedFloatToChar(1.25)
paddedFloatToChar(1.25, padL = 3, padR = 5)

params Get and set simulation parameters.

Description

params and P access the parameter slot in the simList. params has a replace method, so can be
used to update a parameter value.

92 params

Usage

params(sim)

S4 method for signature 'simList'
params(sim)

params(sim) <- value

S4 replacement method for signature 'simList'
params(sim) <- value

P(sim, module, param)

parameters(sim, asDF = FALSE)

S4 method for signature 'simList'
parameters(sim, asDF = FALSE)

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

value The object to be stored at the slot.

module Optional character string indicating which module params should come from.

param Optional character string indicating which parameter to choose.

asDF Logical. For parameters, if TRUE, this will produce a single data.frame of all
model parameters. If FALSE, then it will return a data.frame with 1 row for each
parameter within nested lists, with the same structure as params.

Value

Returns or sets the value of the slot from the simList object.

Note

The differences between P, params and being explicit with passing arguments are mostly a question
of speed and code compactness. The computationally fastest way to get a parameter is to specify
moduleName and parameter name, as in: P(sim, "moduleName", "paramName") (replacing mod-
uleName and paramName with your specific module and parameter names), but it is more verbose
than P(sim)$paramName. Note: the important part for speed (e.g., 2-4x faster) is specifying the
moduleName. Specifying the parameter name is <5

See Also

SpaDES.core-package, specifically the section 1.2.1 on Simulation parameters.

Other functions to access elements of a simList object: .addDepends, doEvent.checkpoint,
envir, events, globals, inputs, modules, objs, packages, paths, progressInterval, times

paths 93

Examples

modules <- list("randomLandscapes")
paths <- list(modulePath = system.file("sampleModules", package = "SpaDES.core"))
mySim <- simInit(modules = modules, paths = paths,

params = list(.globals = list(stackName = "landscape")))
parameters(mySim)

paths Specify paths for modules, inputs, and outputs

Description

Accessor functions for the paths slot in a simList object.

dataPath will return file.path(modulePath(sim), currentModule(sim), "data"). dataPath,
like currentModule,is namespaced. This means that when it is used inside a module, then it will
return that model-specific information. For instance, if used inside a module called "movingAgent",
then currentModule(sim) will return "movingAgent", and dataPath(sim) will return file.path(modulePath(sim), "movingAgent", "data")

Usage

paths(sim)

S4 method for signature 'simList'
paths(sim)

paths(sim) <- value

S4 replacement method for signature 'simList'
paths(sim) <- value

cachePath(sim)

S4 method for signature 'simList'
cachePath(sim)

cachePath(sim) <- value

S4 replacement method for signature 'simList'
cachePath(sim) <- value

inputPath(sim)

S4 method for signature 'simList'
inputPath(sim)

inputPath(sim) <- value

94 paths

S4 replacement method for signature 'simList'
inputPath(sim) <- value

outputPath(sim)

S4 method for signature 'simList'
outputPath(sim)

outputPath(sim) <- value

S4 replacement method for signature 'simList'
outputPath(sim) <- value

modulePath(sim, module)

S4 method for signature 'simList'
modulePath(sim, module)

modulePath(sim) <- value

S4 replacement method for signature 'simList'
modulePath(sim) <- value

dataPath(sim)

S4 method for signature 'simList'
dataPath(sim)

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

value The object to be stored at the slot.

module The optional character string of the module(s) whose paths are desired. If omit-
ted, will return all modulePaths, if more than one exist.

Details

These are ways to add or access the file paths used by spades. There are four file paths: cachePath,
modulePath, inputPath, and outputPath. Each has a function to get or set the value in a simList
object. If no paths are specified, the defaults are as follows:

• cachePath: getOption("reproducible.cachePath");

• inputPath: getOption("spades.modulePath");

• modulePath: getOption("spades.inputPath");

• inputPath: getOption("spades.outputPath").

Plot,simList-method 95

Value

Returns or sets the value of the slot from the simList object.

See Also

SpaDES.core-package, specifically the section 1.2.4 on Simulation Paths.

Other functions to access elements of a simList object: .addDepends, doEvent.checkpoint,
envir, events, globals, inputs, modules, objs, packages, params, progressInterval, times

Plot,simList-method Plot method for simList objects

Description

Extends Plot for simList objects.

Usage

S4 method for signature 'simList'
Plot(..., new = FALSE, addTo = NULL, gp = gpar(),
gpText = gpar(), gpAxis = gpar(), axes = FALSE, speedup = 1,
size = 5, cols = NULL, col = NULL, zoomExtent = NULL,
visualSqueeze = NULL, legend = TRUE, legendRange = NULL,
legendText = NULL, pch = 19, title = NULL,
na.color = "#FFFFFF00", zero.color = NULL, length = NULL,
arr = NULL, plotFn = "plot")

Arguments

... A combination of spatialObjects or non-spatial objects. For many object
classes, there are specific Plot methods. Where there are no specific ones, the
base plotting will be used internally. This means that for objects with no specific
Plot methods, many arguments, such as addTo, will not work. See details.

new Logical. If TRUE, then the previous named plot area is wiped and a new one
made; if FALSE, then the ... plots will be added to the current device, adding or
rearranging the plot layout as necessary. Default is FALSE. This currently works
best if there is only one object being plotted in a given Plot call. However, it is
possible to pass a list of logicals to this, matching the length of the ... objects.
Use clearPlot to clear the whole plotting device.

addTo Character vector, with same length as This is for overplotting, when the
overplot is not to occur on the plot with the same name, such as plotting a
SpatialPoints* object on a RasterLayer.

gp A gpar object, created by gpar function, to change plotting parameters (see
grid package).

gpText A gpar object for the title text. Default gpar(col = "black").

96 Plot,simList-method

gpAxis A gpar object for the axes. Default gpar(col = "black").

axes Logical or "L", representing the left and bottom axes, over all plots.

speedup Numeric. The factor by which the number of pixels is divided by to plot rasters.
See Details.

size Numeric. The size, in points, for SpatialPoints symbols, if using a scalable
symbol.

cols (also col) Character vector or list of character vectors of colours. See details.

col (also cols) Alternative to cols to be consistent with plot. cols takes prece-
dence, if both are provided.

zoomExtent An Extent object. Supplying a single extent that is smaller than the rasters will
call a crop statement before plotting. Defaults to NULL. This occurs after any
downsampling of rasters, so it may produce very pixelated maps.

visualSqueeze Numeric. The proportion of the white space to be used for plots. Default is 0.75.

legend Logical indicating whether a legend should be drawn. Default is TRUE.

legendRange Numeric vector giving values that, representing the lower and upper bounds of
a legend (i.e., 1:10 or c(1,10) will give same result) that will override the data
bounds contained within the grobToPlot.

legendText Character vector of legend value labels. Defaults to NULL, which results in a
pretty numeric representation. If Raster* has a Raster Attribute Table (rat; see
raster package), this will be used by default. Currently, only a single vector
is accepted. The length of this must match the length of the legend, so this is
mostly useful for discrete-valued rasters.

pch see ?par.

title Logical or character string. If logical, it indicates whether to print the object
name as the title above the plot. If a character string, it will print this above the
plot. NOTE: the object name is used with addTo, not the title. Default NULL,
which means print the object name as title, if no other already exists on the plot,
in which case, keep the previous title.

na.color Character string indicating the color for NA values. Default transparent.

zero.color Character string indicating the color for zero values, when zero is the minimum
value, otherwise, zero is treated as any other color. Default transparent.

length Numeric. Optional length, in inches, of the arrow head.

arr A vector of length 2 indicating a desired arrangement of plot areas indicating
number of rows, number of columns. Default NULL, meaning let Plot function
do it automatically.

plotFn An optional function name to do the plotting internally, e.g., "barplot" to get a
barplot() call. Default "plot".

Details

Plot for simList class objects

See Plot. This method strips out stuff from a simList class object that would make it otherwise not
reproducibly digestible between sessions, operating systems, or machines. This will likely still not
allow identical digest results across R versions.

POM 97

See Also

Plot

POM Use Pattern Oriented Modeling to fit unknown parameters

Description

This is very much in alpha condition. It has been tested on simple problems, as shown in the ex-
amples, with up to 2 parameters. It appears that DEoptim is the superior package for the stochastic
problems. This should be used with caution as with all optimization routines. This function can
nevertheless take optim or genoud as optimizers, using stats::optim or rgenoud::genoud, re-
spectively. However, these latter approaches do not seem appropriate for stochastic problems, and
have not been widely tested and are not supported within POM.

Usage

POM(sim, params, objects = NULL, objFn, cl, optimizer = "DEoptim",
sterr = FALSE, ..., objFnCompare = "MAD", optimControl = NULL,
NaNRetries = NA, logObjFnVals = FALSE, weights, useLog = FALSE)

S4 method for signature 'simList,character'
POM(sim, params, objects = NULL, objFn, cl,
optimizer = "DEoptim", sterr = FALSE, ..., objFnCompare = "MAD",
optimControl = NULL, NaNRetries = NA, logObjFnVals = FALSE,
weights, useLog = FALSE)

Arguments

sim A simList simulation object, generally produced by simInit.

params Character vector of parameter names that can be changed by the optimizer.
These must be accessible with params(sim) internally.

objects A optional named list (must be specified if objFn is not). The names of each list
element must correspond to an object in the .GlobalEnv and the list elements
must be objects or functions of objects that can be accessed in the ls(sim) inter-
nally. These will be used to create the objective function passed to the optimizer.
See details and examples.

objFn An optional objective function to be passed into optimizer. If missing, then
POM will use objFnCompare and objects instead. If using POM with a SpaDES
simulation, this objFn must contain a spades call internally, followed by a deriva-
tion of a value that can be minimized but the optimizer. It must have, as first
argument, the values for the parameters. See example.

cl A cluster object. Optional. This would generally be created using parallel::makeCluster
or equivalent. This is an alternative way, instead of beginCluster(), to use par-
allelism for this function, allowing for more control over cluster use.

98 POM

optimizer The function to use to optimize. Default is "DEoptim". Currently it can also
be "optim" or "rgenoud", which use stats::optim or rgenoud::genoud, re-
spectively. The latter two do not seem optimal for stochastic problems and have
not been widely tested.

sterr Logical. If using optimizer = "optim", the hessian can be calculated. If this
is TRUE, then the standard errors can be estimated using that hessian, assuming
normality.

... All objects needed in objFn

objFnCompare Character string. Either, "MAD" or "RMSE" indicating that inside the objective
function, data and prediction will be compared by Mean Absolute Deviation or
Root Mean Squared Error. Default is "MAD".

optimControl List of control arguments passed into the control of each optimization routine.
Currently, only passed to DEoptim.control when optimizer is "DEoptim"

NaNRetries Numeric. If greater than 1, then the function will retry the objective function for
a total of that number of times if it results in an NaN. In general this should not
be used as the objective function should be made so that it doesn’t produce NaN.
But, sometimes it is difficult to diagnose stochastic results.

logObjFnVals Logical or Character string indicating a filename to log the outputs. Ignored if
objFn is supplied. If TRUE (and there is no objFn supplied), then the value of
the individual patterns will be output the console if being run interactively or to
a tab delimited text file named ObjectiveFnValues.txt (or that passed by the
user here) at each evaluation of the POM created objective function. See details.

weights Numeric. If provided, this vector will be multiplied by the standardized devi-
ations (possibly MAD or RMSE) as described in objects. This has the effect
of weighing each standardized deviation (pattern–data pair) to a user specified
amount in the objective function.

useLog Logical. Should the data patterns and output patterns be logged (log) before
calculating the objFnCompare. i.e., mean(abs(log(output) - log(data))).
This should be length 1 or length objects. It will be recycled if length >1, less
than objects.

Details

There are two ways to use this function, via 1) objFn or 2) objects.

1. The user can pass the entire objective function to the objFn argument that will be passed
directly to the optimizer. For this, the user will likely need to pass named objects as part of
the

2. The slightly simpler approach is to pass a list of ’actual data–simulated data’ pairs as a named
list in objects and specify how these objects should be compared via objFnCompare (whose
default is Mean Absolute Deviation or "MAD").

Option 1 offers more control to the user, but may require more knowledge. Option 1 should likely
contain a call to simInit(Copy(simList)) and spades internally. See examples that show simple
examples of each type, option 1 and option 2. In both cases, params is required to indicate which
parameters can be varied in order to achieve the fit.

POM 99

Currently, option 1 only exists when optimizer is "DEoptim", the default.

The upper and lower limits for parameter values are taken from the metadata in the module. Thus,
if the module metadata does not define the upper and lower limits, or these are very wide, then
the optimization may have troubles. Currently, there is no way to override these upper and lower
limits; the module metadata should be changed if there needs to be different parameter limits for
optimization.

objects is a named list of data–pattern pairs. Each of these pairs will be assessed against one an-
other using the objFnCompare, after standardizing each independently. The standardization, which
only occurs if the abs(data value < 1), is: mean(abs(derived value - data value))/mean(data value).
If the data value is between -1 and 1, then there is no standardization. If there is more than one data–
pattern pair, then they will simply be added together in the objective function. This gives equal
weight to each pair. If the user wishes to put different weight on each pattern, a weights vector can
be provided. This will be used to multiply the standardized values described above. Alternatively,
the user may wish to weight them differently, in which case, their relative scales can be adjusted.

There are many options that can be passed to DEoptim, (the details of which are in the help),
using optimControl. The defaults sent from POM to DEoptim are: steptol = 3 (meaning it will
start assessing convergence after 3 iterations (WHICH MAY NOT BE SUFFICIENT FOR YOUR
PROBLEM), NP = 10 * length(params) (meaning the population size is 10 x the number of
parameters) and itermax = 200 (meaning it won’t go past 200 iterations). These and others may
need to be adjusted to obtain good values. NOTE: DEoptim does not provide a direct estimate of
confidence intervals. Also, convergence may be unreliable, and may occur because itermax is
reached. Even when convergence is indicated, the estimates are not guaranteed to be global optima.
This is different than other optimizers that will normally indicate if convergence was not achieved
at termination of the optimization.

Using this function with a parallel cluster currently requires that you pass optimControl = list(parallelType = 1),
and possibly package and variable names (and does not yet accept the cl argument). See examples.
This setting will use all available threads on your computer. Future versions of this will allow pass-
ing of a custom cluster object via cl argument. POM will automatically determine packages to load
in the spawned cluster (via packages) and it will load all objects in the cluster that are necessary,
by sending names(objects) to parVar in DEoptim.control.

Setting logObjFnVals to TRUE may help diagnosing some problems. Using the POM derived ob-
jective function, essentially all patterns are treated equally. This may not give the correct behaviour
for the objective function. Because POM weighs the patterns equally, it may be useful to use the log
files to examine the behaviour of the pattern–data pairs. The first file, ObjectiveFnValues.txt, shows
the result of each of the (possibly logged), pattern–data deviations, standardized, and weighted.
The second file, ‘ObjectiveFnValues_RawPatterns.txt’, shows the actual value of the pattern
(unstandardized, unweighted, unlogged). If weights is passed, then these weighted values will be
reflected in the ‘ObjectiveFnValues.txt’ file.

Value

A list with at least 2 elements. The first (or first several) will be the returned object from the
optimizer. The second (or last if there are more than 2), named args is the set of arguments that
were passed into the control of the optimizer.

Author(s)

Eliot McIntire

100 POM

See Also

spades, makeCluster, simInit

Examples

if (interactive()) {
set.seed(89462)
library(parallel)
library(raster)
mySim <- simInit(

times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned"),
fireSpread = list(nfires = 5),
randomLandscapes = list(nx = 300, ny = 300)

),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"))

)

Since this is a made up example, we don't have real data
to run POM against. Instead, we will run the model once,
take the values at the end of the simulation as if they
are real data, then rerun the POM function next,
comparing these "data" with the simulated values
using Mean Absolute Deviation
outData <- spades(reproducible::Copy(mySim), .plotInitialTime = NA)

Extract the "true" data, in this case, the "proportion of cells burned"
Function defined that will use landscape$Fires map from simList,
i.e., sim$landscape$Fires
the return value being compared via MAD with propCellBurnedData
propCellBurnedFn <- function(landscape) {

sum(getValues(landscape$Fires) > 0) / ncell(landscape$Fires)
}
visualize the burned maps of true "data"
propCellBurnedData <- propCellBurnedFn(outData$landscape)
clearPlot()
if (interactive()) {

fires <- outData$landscape$Fires # Plot doesn't do well with many nested layers
Plot(fires)

}

Example 1 - 1 parameter
In words, this says, "find the best value of spreadprob such that
the proportion of the area burned in the simulation
is as close as possible to the proportion area burned in
the "data", using \code{DEoptim()}.

Can use cluster if computer is multi-threaded.
This example can use parallelType = 1 in DEoptim. For this, you must manually
pass all packages and variables as character strings.

POM 101

cl <- makeCluster(detectCores() - 1) # not implemented yet in DEoptim
out1 <- POM(mySim, "spreadprob",

list(propCellBurnedData = propCellBurnedFn), # data = pattern pair
#optimControl = list(parallelType = 1),
logObjFnVals = TRUE)

Once cl arg is available from DEoptim, this will work:
out1 <- POM(mySim, "spreadprob", cl = cl,
list(propCellBurnedData = propCellBurnedFn)) # data = pattern pair

Example 2 - 2 parameters
Function defined that will use caribou from sim$caribou, with
the return value being compared via MAD with nPattern
module, parameter N, is from 10 to 1000)
caribouFn <- function(caribou) length(caribou)

Extract "data" from simList object (normally, this would be actual data)
nPattern <- caribouFn(outData$caribou)

aTime <- Sys.time()
parsToVary <- c("spreadprob", "N")
out2 <- POM(mySim, parsToVary,

list(propCellBurnedData = propCellBurnedFn,
nPattern = caribouFn), logObjFnVals = TRUE)
#optimControl = list(parallelType = 1))
#cl = cl) # not yet implemented, waiting for DEoptim

bTime <- Sys.time()
check that population overlaps known values (0.225 and 100)
apply(out2$member$pop, 2, quantile, c(0.025, 0.975))
hists <- apply(out2$member$pop, 2, hist, plot = FALSE)
clearPlot()
for (i in seq_along(hists)) Plot(hists[[i]], addTo = parsToVary[i],

title = parsToVary[i], axes = TRUE)

print(paste("DEoptim", format(bTime - aTime)))
#stopCluster(cl) # not yet implemented, waiting for DEoptim

Example 3 - using objFn instead of objects

list all the parameters in the simList, from these, we select to vary
params(mySim)

Objective Function Example:
objective function must have several elements
- first argument must be parameter vector, passed to and used by DEoptim
- likely needs to take sim object, likely needs a copy
because of pass-by-reference semantics of sim objects
- pass data that will be used internally for objective function
objFnEx <- function(pars, # param values

sim, # simList object
nPattern, propCellBurnedData, caribouFn, propCellBurnedFn) {

data

102 POM

make a copy of simList because it will possibly be altered by spades call
sim1 <- reproducible::Copy(sim)

take the parameters and assign them to simList
params(sim1)$fireSpread$spreadprob <- pars[1]
params(sim1)$caribouMovement$N <- pars[2]

run spades, without plotting
out <- spades(sim1, .plotInitialTime = NA)

calculate outputs
propCellBurnedOut <- propCellBurnedFn(out$landscape)
nPattern_Out <- caribouFn(out$caribou)

minimizeFn <- abs(nPattern_Out - nPattern) +
abs(propCellBurnedOut - propCellBurnedData)

have more info reported to console, if desired
cat(minimizeFn)
cat(" ")
cat(pars)
cat("\n")

return(minimizeFn)
}

Run DEoptim with custom objFn, identifying 2 parameters to allow
to vary, and pass all necessary objects required for the
objFn

choose 2 of them to vary. Need to identify them in params & inside objFn
Change optimization parameters to alter how convergence is achieved
out5 <- POM(mySim, params = c("spreadprob", "N"),

objFn = objFnEx,
nPattern = nPattern,
propCellBurnedData = propCellBurnedData,
caribouFn = caribouFn,
propCellBurnedFn = propCellBurnedFn,

#cl = cl, # uncomment for cluster # not yet implemented, waiting for DEoptim
see ?DEoptim.control for explanation of these options
optimControl = list(

NP = 100, # run 100 populations, allowing quantiles to be calculated
initialpop = matrix(c(runif(100, 0.2, 0.24), runif(100, 80, 120)), ncol = 2),

parallelType = 1
)

)

Can also use an optimizer directly -- miss automatic parameter bounds,
and automatic objective function using option 2
library(DEoptim)
out7 <- DEoptim(fn = objFnEx,

sim = mySim,
nPattern = nPattern,

priority 103

propCellBurnedData = propCellBurnedData,
caribouFn = caribouFn,
propCellBurnedFn = propCellBurnedFn,
cl = cl, # uncomment for cluster
see ?DEoptim.control for explanation of these options
control = DEoptim.control(

steptol = 3,
parallelType = 1, # parallelType = 3,
packages = list("raster", "SpaDES.core", "RColorBrewer"),
parVar = list("objFnEx"),
initialpop = matrix(c(runif(40, 0.2, 0.24),

runif(40, 80, 120)), ncol = 2)),
lower = c(0.2, 80), upper = c(0.24, 120))

}

priority Event priority

Description

Preset event priorities: 1 = first (highest); 5 = normal; 10 = last (lowest).

Usage

.first()

.highest()

.last()

.lowest()

.normal()

Value

A numeric.

Author(s)

Alex Chubaty

104 progressInterval

progressInterval Get and set simulation progress bar details

Description

The progress bar can be set in two ways in SpaDES. First, by setting values in the .progress list
element in the params list element passed to simInit. Second, at the spades call itself, which can
be simpler. See examples.

Usage

progressInterval(sim)

S4 method for signature 'simList'
progressInterval(sim)

progressInterval(sim) <- value

S4 replacement method for signature 'simList'
progressInterval(sim) <- value

progressType(sim)

S4 method for signature 'simList'
progressType(sim)

progressType(sim) <- value

S4 replacement method for signature 'simList'
progressType(sim) <- value

Arguments

sim A simList object from which to extract element(s) or in which to replace ele-
ment(s).

value The object to be stored at the slot.

Details

Progress Bar: Progress type can be one of "text", "graphical", or "shiny". Progress interval can
be a numeric. These both can get set by passing a .progress = list(type = "graphical", interval = 1)
into the simInit call. See examples.

See Also

Other functions to access elements of a simList object: .addDepends, doEvent.checkpoint,
envir, events, globals, inputs, modules, objs, packages, params, paths, times

rasterToMemory 105

Examples

Not run:
mySim <- simInit(

times = list(start=0.0, end=100.0),
params = list(.globals = list(stackName = "landscape"),
.progress = list(type = "text", interval = 10),
.checkpoint = list(interval = 10, file = "chkpnt.RData")),
modules = list("randomLandscapes"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core")))

progress bar
progressType(mySim) # "text"
progressInterval(mySim) # 10

parameters
params(mySim) # returns all parameters in all modules

including .global, .progress, .checkpoint
globals(mySim) # returns only global parameters

checkpoint
checkpointFile(mySim) # returns the name of the checkpoint file

In this example, "chkpnt.RData"
checkpointInterval(mySim) # 10

End(Not run)

rasterToMemory Read raster to memory

Description

Wrapper to the raster function, that creates the raster object in memory, even if it was read in from
file.

Usage

rasterToMemory(x, ...)

S4 method for signature 'ANY'
rasterToMemory(x, ...)

Arguments

x An object passed directly to the function raster (e.g., character string of a file-
name).

... Additional arguments to raster.

106 remoteFileSize

Value

A raster object whose values are stored in memory.

Author(s)

Eliot McIntire and Alex Chubaty

See Also

raster.

remoteFileSize Determine the size of a remotely hosted file

Description

Query a remote web server to determine the size of a remote file.

Usage

remoteFileSize(url)

Arguments

url The url of the remote file.

Value

A numeric indicating the size of the remote file in bytes.

Author(s)

Eliot McIntire and Alex Chubaty

Examples

urls <- c("https://www.alexchubaty.com/uploads/2011/11/open-forest-science-journal.csl",
"https://www.alexchubaty.com/uploads/2011/08/models_GUI_2011-08-07.zip",
"http://example.com/doesntexist.csv")

try(remoteFileSize(urls)) ## 5429, 3997384, 0

rndstr 107

rndstr Generate random strings

Description

Generate a vector of random alphanumeric strings each of an arbitrary length.

Usage

rndstr(n, len, characterFirst)

S4 method for signature 'numeric,numeric,logical'
rndstr(n, len, characterFirst)

S4 method for signature 'numeric,numeric,missing'
rndstr(n, len)

S4 method for signature 'numeric,missing,logical'
rndstr(n, characterFirst)

S4 method for signature 'missing,numeric,logical'
rndstr(len, characterFirst)

S4 method for signature 'numeric,missing,missing'
rndstr(n)

S4 method for signature 'missing,numeric,missing'
rndstr(len)

S4 method for signature 'missing,missing,logical'
rndstr(characterFirst)

S4 method for signature 'missing,missing,missing'
rndstr(n, len, characterFirst)

Arguments

n Number of strings to generate (default 1). Will attempt to coerce to integer
value.

len Length of strings to generate (default 8). Will attempt to coerce to integer value.

characterFirst Logical, if TRUE, then a letter will be the first character of the string (useful if
being used for object names).

Value

Character vector of random strings.

108 saveFiles

Author(s)

Alex Chubaty and Eliot McIntire

Examples

set.seed(11)
rndstr()
rndstr(len = 10)
rndstr(characterFirst = FALSE)
rndstr(n = 5, len = 10)
rndstr(n = 5)
rndstr(n = 5, characterFirst = TRUE)
rndstr(len = 10, characterFirst = TRUE)
rndstr(n = 5, len = 10, characterFirst = TRUE)

saveFiles Save objects using .saveObjects in params slot of simInit

Description

In the simInit call, a parameter called .saveObjects can be provided in each module. This must
be a character string vector of all object names to save. These objects will then be saved whenever
a call to saveFiles is made.

Usage

saveFiles(sim)

Arguments

sim A simList simulation object.

Details

The file names will be equal to the object name plus time(sim) is appended at the end. The files
are saved as .rds files, meaning, only one object gets saved per file.

For objects saved using this function, the module developer must create save events that schedule a
call to saveFiles.

If this function is used outside of a module, it will save all files in the outputs(sim) that are scheduled
to be saved at the current time in the simList.

There are 3 ways to save objects using SpaDES.

1. Model-level saving

Using the outputs slot in the simInit call. See example in simInit. This can be convenient
because it gives overall control of many modules at a time, and it gets automatically scheduled
during the simInit call.

saveFiles 109

2. Module-level saving

Using the saveFiles function inside a module. This must be accompanied by a .saveObjects list
element in the params slot in the simList. Usually a module developer will create this method for
future users of their module.

3. Custom saving

A module developer can save any object at any time inside their module, using standard R functions
for saving R objects (e.g., save or saveRDS). This is the least modular approach, as it will happen
whether a module user wants it or not.

Note

It is not possible to schedule separate saving events for each object that is listed in the .saveObjects.

Author(s)

Eliot McIntire

Alex Chubaty

Examples

Not run:

This will save the "caribou" object at the save interval of 1 unit of time
in the outputPath location
outputPath <- file.path(tempdir(), "test_save")
times <- list(start = 0, end = 6, "month")
parameters <- list(

.globals = list(stackName = "landscape"),
caribouMovement = list(
.saveObjects = "caribou",
.saveInitialTime = 1, .saveInterval = 1

),
randomLandscapes = list(.plotInitialTime = NA, nx = 20, ny = 20))

modules <- list("randomLandscapes", "caribouMovement")
paths <- list(

modulePath = system.file("sampleModules", package = "SpaDES.core"),
outputPath = savePath

)
mySim <- simInit(times = times, params = parameters, modules = modules,

paths = paths)

The caribou module has a saveFiles(sim) call, so it will save caribou
spades(mySim)
dir(outputPath)

remove the files
file.remove(dir(savePath, full.names = TRUE))

110 scheduleConditionalEvent

End(Not run)

scheduleConditionalEvent

Schedule a conditional simulation event

Description

Adds a new event to the simulation’s conditional event queue, updating the simulation object by
creating or appending to sim$._conditionalEvents. This is very experimental. Use with caution.

Usage

scheduleConditionalEvent(sim, condition, moduleName, eventType,
eventPriority = .pkgEnv$.normalVal, minEventTime = start(sim),
maxEventTime = end(sim))

Arguments

sim A simList simulation object.

condition A string, call or expression that will be assessed for TRUE after each event in the
regular event queue. It can access objects in the simList by using functions of
sim, e.g., "sim$age > 1"

moduleName A character string specifying the module from which to call the event. If miss-
ing, it will use currentModule(sim)

eventType A character string specifying the type of event from within the module.

eventPriority A numeric specifying the priority of the event. Lower number means higher
priority. As a best practice, it is recommended that decimal values are conceptual
grouped by their integer values (e.g., 4.0, 4.25, 4.5 are conceptually similar). See
priority.

minEventTime A numeric specifying the time before which the event should not occur, even if
the condition is met. Defaults to start(sim)

maxEventTime A numeric specifying the time after which the event should not occur, even if
the condition is met. Defaults to end(sim)

Value

Returns the modified simList object, i.e., sim$._conditionalEvents

This conditional event queue will be assessed at every single event in the normal event queue. If
there are no conditional events, then spades will proceed as normal. As conditional event conditions
are found to be true, then it will trigger a call to scheduleEvent(...) with the current time passed
to eventTime and it will remove the conditional event from the conditional queue. If the user would
like the triggered conditional event to occur as the very next event, then a possible strategy would
be to set eventPriority of the conditional event to very low or even negative to ensure it gets
inserted at the top of the event queue.

scheduleEvent 111

Author(s)

Eliot McIntire

References

Matloff, N. (2011). The Art of R Programming (ch. 7.8.3). San Francisco, CA: No Starch Press,
Inc.. Retrieved from https://www.nostarch.com/artofr.htm

See Also

scheduleEvent, conditionalEvents

Examples

sim <- simInit(times = list(start = 0, end = 2))
condition <- "sim$age > 1" # provide as string
condition <- quote(sim$age > 1) # provide as a call
condition <- expression(sim$age > 1) # provide as an expression
sim <- scheduleConditionalEvent(sim, condition, "firemodule", "burn")
conditionalEvents(sim)
sim <- spades(sim) # no changes to sim$age, i.e., it is absent
events(sim) # nothing scheduled
sim$age <- 2 # change the value
sim <- spades(sim) # Run spades, the condition is now true, so event is

scheduled at current time
events(sim) # now scheduled in the normal event queue

scheduleEvent Schedule a simulation event

Description

Adds a new event to the simulation’s event queue, updating the simulation object.

Usage

scheduleEvent(sim, eventTime, moduleName, eventType,
eventPriority = .pkgEnv$.normalVal, .skipChecks = FALSE)

Arguments

sim A simList simulation object.

eventTime A numeric specifying the time of the next event.

moduleName A character string specifying the module from which to call the event. If miss-
ing, it will use currentModule(sim)

eventType A character string specifying the type of event from within the module.

https://www.nostarch.com/artofr.htm

112 scheduleEvent

eventPriority A numeric specifying the priority of the event. Lower number means higher
priority. As a best practice, it is recommended that decimal values are conceptual
grouped by their integer values (e.g., 4.0, 4.25, 4.5 are conceptually similar). See
priority.

.skipChecks Logical. If TRUE, then internal checks that arguments match expected types are
skipped. Should only be used if speed is critical.

Details

Here, we implement a simulation in a more modular fashion so it’s easier to add submodules to
the simulation. We use S4 classes and methods, and use ‘data.table‘ instead of ‘data.frame‘ to
implement the event queue (because it is much faster).

Value

Returns the modified simList object.

Author(s)

Alex Chubaty

References

Matloff, N. (2011). The Art of R Programming (ch. 7.8.3). San Francisco, CA: No Starch Press,
Inc.. Retrieved from https://www.nostarch.com/artofr.htm

See Also

priority, scheduleConditionalEvent

Examples

Not run:
scheduleEvent(x, time(sim) + 1.0, "firemodule", "burn") # default priority
scheduleEvent(x, time(sim) + 1.0, "firemodule", "burn", .normal()) # default priority

scheduleEvent(x, time(sim) + 1.0, "firemodule", "burn", .normal()-1) # higher priority
scheduleEvent(x, time(sim) + 1.0, "firemodule", "burn", .normal()+1) # lower priority

scheduleEvent(x, time(sim) + 1.0, "firemodule", "burn", .highest()) # highest priority
scheduleEvent(x, time(sim) + 1.0, "firemodule", "burn", .lowest()) # lowest priority

End(Not run)

https://www.nostarch.com/artofr.htm

show,simList-method 113

show,simList-method Show an Object

Description

Show an Object

Usage

S4 method for signature 'simList'
show(object)

Arguments

object simList

Author(s)

Alex Chubaty

simInit Initialize a new simulation

Description

Create a new simulation object, the "sim" object. This object is implemented using an environment
where all objects and functions are placed. Since environments in R are pass by reference, "putting"
objects in the sim object does no actual copy. The simList also stores all parameters, and other
important simulation information, such as times, paths, modules, and module load order. See more
details below.

Usage

simInit(times, params, modules, objects, paths, inputs, outputs, loadOrder,
notOlderThan = NULL)

S4 method for signature
'list,list,list,list,list,data.frame,data.frame,character'
simInit(times,
params, modules, objects, paths, inputs, outputs, loadOrder,
notOlderThan = NULL)

S4 method for signature 'ANY,ANY,ANY,character,ANY,ANY,ANY,ANY'
simInit(times, params,
modules, objects, paths, inputs, outputs, loadOrder,

114 simInit

notOlderThan = NULL)

S4 method for signature 'ANY,ANY,character,ANY,ANY,ANY,ANY,ANY'
simInit(times, params,
modules, objects, paths, inputs, outputs, loadOrder,
notOlderThan = NULL)

S4 method for signature 'ANY,ANY,ANY,ANY,ANY,ANY,ANY,ANY'
simInit(times, params, modules,
objects, paths, inputs, outputs, loadOrder, notOlderThan = NULL)

Arguments

times A named list of numeric simulation start and end times (e.g., times = list(start = 0.0, end = 10.0)).
params A list of lists of the form list(moduleName=list(param1=value, param2=value)).

See details.
modules A named list of character strings specifying the names of modules to be loaded

for the simulation. Note: the module name should correspond to the R source
file from which the module is loaded. Example: a module named "caribou" will
be sourced form the file ‘caribou.R’, located at the specified modulePath(simList)
(see below).

objects (optional) A vector of object names (naming objects that are in the calling envi-
ronment of the simInit, which is often the .GlobalEnv unless used program-
matically – NOTE: this mechanism will fail if object name is in a package de-
pendency), or a named list of data objects to be passed into the simList (more
reliable). These objects will be accessible from the simList as a normal list, e.g,.
mySim$obj.

paths An optional named list with up to 4 named elements, modulePath, inputPath,
outputPath, and cachePath. See details. NOTE: Experimental feature now
allows for multiple modulePaths to be specified in a character vector. The mod-
ules will be searched for sequentially in the first modulePath, then if it doesn’t
find it, in the second etc.

inputs A data.frame. Can specify from 1 to 6 columns with following column names:
objectName (character, required), file (character), fun (character), package
(character), interval (numeric), loadTime (numeric). See inputs and vignette("ii-
modules") section about inputs.

outputs A data.frame. Can specify from 1 to 5 columns with following column names:
objectName (character, required), file (character), fun (character), package
(character), saveTime (numeric). See outputs and vignette("ii-modules")
section about outputs.

loadOrder An optional list of module names specifying the order in which to load the mod-
ules. If not specified, the module load order will be determined automatically.

notOlderThan A time, as in from Sys.time(). This is passed into the Cache function that
wraps .inputObjects. If the module uses the .useCache parameter and it is set
to TRUE or ".inputObjects", then the .inputObjects will be cached. Setting
notOlderThan = Sys.time() will cause the cached versions of .inputObjects
to be refreshed, i.e., rerun.

simInit 115

Details

Calling this simInit function does the following::

What Details Argument(s) to use
fills simList slots places the arguments times, params, modules, paths into equivalently named simList slots times, params, modules, paths
sources all module files places all function definitions in the simList, specifically, into a sub-environment of the main simList environment: e.g., sim$<moduleName>$function1 (see section on Scoping) modules
copies objects from the global environment to the simList environment objects
loads objects from disk into the simList inputs
schedule object loading/copying Objects can be loaded into the simList at any time during a simulation inputs
schedule object saving Objects can be saved to disk at any arbitrary time during the simulation. If specified here, this will be in addition to any saving due code inside a module (i.e., a module may manually run write.table(...) outputs
schedules "init" events from all modules (see events) automatic
assesses module dependencies via the inputs and outputs identified in their metadata. This gives the order of the .inputObjects and init events. This can be overridden by loadOrder. automatic
determines time unit takes time units of modules and how they fit together times or automatic
runs .inputObjects functions from every module in the module order as determined above automatic

params can only contain updates to any parameters that are defined in the metadata of modules.
Take the example of a module named, Fire, which has a parameter named .plotInitialTime. In
the metadata of that module, it says TRUE. Here we can override that default with: list(Fire=list(.plotInitialTime=NA)),
effectively turning off plotting. Since this is a list of lists, one can override the module defaults for
multiple parameters from multiple modules all at once, with say: list(Fire = list(.plotInitialTime = NA, .plotInterval = 2), caribouModule = list(N = 1000)).

We implement a discrete event simulation in a more modular fashion so it is easier to add modules
to the simulation. We use S4 classes and methods, and fast lists to manage the event queue.

paths specifies the location of the module source files, the data input files, and the saving output
files. If no paths are specified the defaults are as follows:

• cachePath: getOption("reproducible.cachePath");
• inputPath: getOption("spades.modulePath");
• modulePath: getOption("spades.inputPath");
• inputPath: getOption("spades.outputPath").

Value

A simList simulation object, pre-initialized from values specified in the arguments supplied.

Parsing and Checking Code

The simInit function will attempt to find usage of sim$xxx or sim[[’xxx’]] on either side of the
assignment "<-" operator. It will compare these to the module metadata, specifically inputObjects
for cases where objects or "gotten" from the simList and outputObjects for cases where objects
are assigned to the simList.

It will also attempt to find potential, common function name conflicts with things like scale and
stack (both in base and raster), and Plot (in quickPlot and some modules).

This code checking is young and may get false positives and false negatives – i.e., miss things. It
also takes computational time, which may be undesirable in operational code. To turn off checking
(i.e., if there are too many false positives and negatives), set the option spades.moduleCodeChecks
to FALSE, e.g., options(spades.moduleCodeChecks = FALSE)

116 simInit

Caching

Using caching with SpaDES is vital when building re-usable and reproducible content. Please see
the vignette dedicated to this topic.

Note

Since the objects in the simList are passed-by-reference, it is useful to create a copy of the inital-
ized simList object prior to running the simulation (e.g., mySimOut <- spades(Copy(mySim))).
This ensures you retain access to the original objects, which would otherwise be overwritten/modified
during the simulation.

The user can opt to run a simpler simInit call without inputs, outputs, and times. These can be
added later with the accessor methods (See example). These are not required for initializing the
simulation via simInit. All of modules, paths, params, and objects are needed for successful
initialization.

Author(s)

Alex Chubaty and Eliot McIntire

References

Matloff, N. (2011). The Art of R Programming (ch. 7.8.3). San Francisco, CA: No Starch Press,
Inc.. Retrieved from https://www.nostarch.com/artofr.htm

See Also

spades, times, params, objs, paths, modules, inputs, outputs

Examples

Not run:
mySim <- simInit(
times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")
),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"))
)
spades(mySim) # shows plotting

Change more parameters, removing plotting
mySim <- simInit(
times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned"),
fireSpread = list(.plotInitialTime = NA)

),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"))

https://www.nostarch.com/artofr.htm

simInit 117

)
outSim <- spades(mySim)

A little more complicated with inputs and outputs
if (require(rgdal)) {
mapPath <- system.file("maps", package = "quickPlot")
mySim <- simInit(
times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")
),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"),

outputPath = tempdir()),
inputs = data.frame(

files = dir(file.path(mapPath), full.names = TRUE, pattern = "tif")[1:2],
functions = "raster",
package = "raster",
loadTime = 1,
stringsAsFactors = FALSE),

outputs = data.frame(
expand.grid(objectName = c("caribou","landscape"),
saveTime = 1:2,
stringsAsFactors = FALSE))

)

Use accessors for inputs, outputs
mySim2 <- simInit(
times = list(current = 0, start = 0.0, end = 2.0, timeunit = "year"),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
params = list(.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")),
paths = list(

modulePath = system.file("sampleModules", package = "SpaDES.core"),
outputPath = tempdir()

)
)

add by accessor is equivalent
inputs(mySim2) <- data.frame(

files = dir(file.path(mapPath), full.names = TRUE, pattern = "tif")[1:2],
functions = "raster",
package = "raster",
loadTime = 1,
stringsAsFactors = FALSE)

outputs(mySim2) <- data.frame(
expand.grid(objectName = c("caribou", "landscape"),
saveTime = 1:2,
stringsAsFactors = FALSE))

all.equal(mySim, mySim2) # TRUE

Use accessors for times -- does not work as desired because times are
adjusted to the input timeunit during simInit
mySim2 <- simInit(

118 simInitAndSpades

params = list(
.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")

),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"),

outputPath = tempdir()),
inputs = data.frame(

files = dir(file.path(mapPath), full.names = TRUE, pattern = "tif")[1:2],
functions = "raster",
package = "raster",
loadTime = 1,
stringsAsFactors = FALSE),

outputs = data.frame(
expand.grid(objectName = c("caribou","landscape"),
saveTime = 1:2,
stringsAsFactors = FALSE))

)

add times by accessor fails all.equal test because "year" was not
declared during module loading, so month became the default
times(mySim2) <- list(current = 0, start = 0.0, end = 2.0, timeunit = "year")
all.equal(mySim, mySim2) # fails because time units are all different, so

several parameters that have time units in
"months" because they were loaded that way

params(mySim)$fireSpread$.plotInitialTime
params(mySim2)$fireSpread$.plotInitialTime
events(mySim) # load event is at time 1 year
events(mySim2) # load event is at time 1 month, reported in years because of

update to times above
}

End(Not run)

simInitAndSpades Call simInit and spades or experiment together

Description

These functions are convenience wrappers that may allow for more efficient Caching. Passes all
arguments to simInit, then passes the created simList to spades or experiment.

Usage

simInitAndSpades(times, params, modules, objects, paths, inputs, outputs,
loadOrder, notOlderThan, debug, progress, cache, .plotInitialTime,
.saveInitialTime, ...)

simInitAndExperiment(times, params, modules, objects, paths, inputs,
outputs, loadOrder, notOlderThan, replicates, dirPrefix, substrLength,
saveExperiment, experimentFile, clearSimEnv, cl, ...)

simInitAndSpades 119

Arguments

times A named list of numeric simulation start and end times (e.g., times = list(start = 0.0, end = 10.0)).

params A list of lists of the form list(moduleName=list(param1=value, param2=value)).
See details.

modules A named list of character strings specifying the names of modules to be loaded
for the simulation. Note: the module name should correspond to the R source
file from which the module is loaded. Example: a module named "caribou" will
be sourced form the file ‘caribou.R’, located at the specified modulePath(simList)
(see below).

objects (optional) A vector of object names (naming objects that are in the calling envi-
ronment of the simInit, which is often the .GlobalEnv unless used program-
matically – NOTE: this mechanism will fail if object name is in a package de-
pendency), or a named list of data objects to be passed into the simList (more
reliable). These objects will be accessible from the simList as a normal list, e.g,.
mySim$obj.

paths An optional named list with up to 4 named elements, modulePath, inputPath,
outputPath, and cachePath. See details. NOTE: Experimental feature now
allows for multiple modulePaths to be specified in a character vector. The mod-
ules will be searched for sequentially in the first modulePath, then if it doesn’t
find it, in the second etc.

inputs A data.frame. Can specify from 1 to 6 columns with following column names:
objectName (character, required), file (character), fun (character), package
(character), interval (numeric), loadTime (numeric). See inputs and vignette("ii-
modules") section about inputs.

outputs A data.frame. Can specify from 1 to 5 columns with following column names:
objectName (character, required), file (character), fun (character), package
(character), saveTime (numeric). See outputs and vignette("ii-modules")
section about outputs.

loadOrder An optional list of module names specifying the order in which to load the mod-
ules. If not specified, the module load order will be determined automatically.

notOlderThan A time, as in from Sys.time(). This is passed into the Cache function that
wraps .inputObjects. If the module uses the .useCache parameter and it is set
to TRUE or ".inputObjects", then the .inputObjects will be cached. Setting
notOlderThan = Sys.time() will cause the cached versions of .inputObjects
to be refreshed, i.e., rerun.

debug Optional logical flag or character vector indicating what to print to console at
each event. See details. Default is to use the value in getOption("spades.debug").

progress Logical (TRUE or FALSE show a graphical progress bar), character ("graphical",
"text") or numeric indicating the number of update intervals to show in a
graphical progress bar.

cache Logical. If TRUE, then the spades call will be cached. This means that if the call
is made again with the same simList, then ‘spades“ will return the return value
from the previous run of that exact same simList. Default FALSE. See Details.
See also the vignette on caching for examples.

120 simList-class

.plotInitialTime

Numeric. Temporarily override the .plotInitialTime parameter for all mod-
ules. See Details.

.saveInitialTime

Numeric. Temporarily override the .plotInitialTime parameter for all mod-
ules. See Details.

... Arguments passed to simInit, and spades or experiment

replicates The number of replicates to run of the same simList. See details and examples.

dirPrefix String vector. This will be concatenated as a prefix on the directory names. See
details and examples.

substrLength Numeric. While making outputPath for each spades call, this is the number of
characters kept from each factor level. See details and examples.

saveExperiment Logical. Should params, modules, inputs, sim, and resulting experimental de-
sign be saved to a file. If TRUE are saved to a single list called experiment.
Default TRUE.

experimentFile String. Filename if saveExperiment is TRUE; saved to outputPath(sim) in
.RData format. See Details.

clearSimEnv Logical. If TRUE, then the envir(sim) of each simList in the return list is emp-
tied. This is to reduce RAM load of large return object. Default FALSE.

cl A cluster object. Optional. This would generally be created using parallel::makeCluster
or equivalent. This is an alternative way, instead of beginCluster(), to use par-
allelism for this function, allowing for more control over cluster use.

Details

simInitAndExperiment cannot pass modules or params to experiment because these are also in
simInit. If the experiment is being used to vary these arguments, it must be done separately (i.e.,
simInit then experiment).

Value

Same as spades (a simList) or experiment (list of simList objects)

See Also

simInit, spades experiment

simList-class The simList class

Description

Contains the minimum components of a SpaDES simulation. Various slot accessor methods (i.e., get
and set functions) are provided (see ’Accessor Methods’ below).

simList-class 121

Details

Based on code from chapter 7.8.3 of Matloff (2011): "Discrete event simulation". Here, we imple-
ment a discrete event simulation in a more modular fashion so it’s easier to add simulation compo-
nents (i.e., "simulation modules"). We use S4 classes and methods, and use data.table instead of
data.frame to implement the event queue (because it is much more efficient).

Slots

modules List of character names specifying which modules to load.

params Named list of potentially other lists specifying simulation parameters.

events The list of scheduled events (i.e., event queue), as a data.table. See ’Event Lists’ for
more information.

current The current event, as a data.table. See ’Event Lists’ for more information..

completed The list of completed events, as a list. See ’Event Lists’ for more information. It is
kept as a list of individual events for speed. The completed method converts it to a sorted
data.table.

depends A .simDeps list of .moduleDeps objects containing module object dependency informa-
tion.

simtimes List of numerical values describing the simulation start and end times; as well as the
current simulation time.

inputs a data.frame or data.table of files and metadata

outputs a data.frame or data.table of files and metadata

paths Named list of modulePath, inputPath, and outputPath paths. Partial matching is per-
formed.

.xData Environment referencing the objects used in the simulation. Several "shortcuts" to access-
ing objects referenced by this environment are provided, and can be used on the simList
object directly instead of specifying the .xData slot: $, [[, ls, ls.str, objs. See examples.

.envir Deprecated. Please do not use any more.

Accessor Methods

Several slot (and sub-slot) accessor methods are provided for use, and categorized into separate help
pages:

simList-accessors-envir Simulation environment.
simList-accessors-events Scheduled and completed events.
simList-accessors-inout Passing data in to / out of simulations.
simList-accessors-modules Modules loaded and used; module dependencies.
simList-accessors-objects Accessing objects used in the simulation.
simList-accessors-params Global and module-specific parameters.
simList-accessors-paths File paths for modules, inputs, and outputs.
simList-accessors-times Simulation times.

122 spades

Event Lists

The main event list is a sorted data.table (keyed) on eventTime, and eventPriority. The completed
event list is an ordered list in the exact order that the events were executed. Each event is represented
by a data.table row consisting of:

eventTime The time the event is to occur.
moduleName The module from which the event is taken.
eventType A character string for the programmer-defined event type.
eventPriority The priority given to the event.

Note

The simList class extends the environment, by adding several slots that provide information about
the metadata for a discrete event simulation. The environment slot, if accessed directly is .xData
and this is where input and output objects from modules are placed. The simList_ class is similar,
but it extends the list class. All other slots are the same. Thus, simList is identical to simList_,
except that the former uses an environment for objects and the latter uses a list. The class simList_
is only used internally.

Author(s)

Alex Chubaty and Eliot McIntire

References

Matloff, N. (2011). The Art of R Programming (ch. 7.8.3). San Francisco, CA: No Starch Press,
Inc.. Retrieved from https://www.nostarch.com/artofr.htm

spades Run a spatial discrete event simulation

Description

Here, we implement a simulation in a more modular fashion so it’s easier to add submodules to
the simulation. We use S4 classes and methods, and use ‘data.table‘ instead of ‘data.frame‘ to
implement the event queue (because it is much faster).

Usage

spades(sim, debug = getOption("spades.debug"), progress = NA, cache,
.plotInitialTime = NULL, .saveInitialTime = NULL,
notOlderThan = NULL, ...)

S4 method for signature 'simList,ANY,ANY,missing'
spades(sim,
debug = getOption("spades.debug"), progress = NA, cache,

https://www.nostarch.com/artofr.htm

spades 123

.plotInitialTime = NULL, .saveInitialTime = NULL,
notOlderThan = NULL, ...)

S4 method for signature 'ANY,ANY,ANY,logical'
spades(sim,
debug = getOption("spades.debug"), progress = NA, cache,
.plotInitialTime = NULL, .saveInitialTime = NULL,
notOlderThan = NULL, ...)

Arguments

sim A simList simulation object, generally produced by simInit.

debug Optional logical flag or character vector indicating what to print to console at
each event. See details. Default is to use the value in getOption("spades.debug").

progress Logical (TRUE or FALSE show a graphical progress bar), character ("graphical",
"text") or numeric indicating the number of update intervals to show in a
graphical progress bar.

cache Logical. If TRUE, then the spades call will be cached. This means that if the call
is made again with the same simList, then ‘spades“ will return the return value
from the previous run of that exact same simList. Default FALSE. See Details.
See also the vignette on caching for examples.

.plotInitialTime

Numeric. Temporarily override the .plotInitialTime parameter for all mod-
ules. See Details.

.saveInitialTime

Numeric. Temporarily override the .plotInitialTime parameter for all mod-
ules. See Details.

notOlderThan Date or time. Passed to reproducible::Cache to update the cache. Default is
NULL, meaning don’t update the cache. If Sys.time() is provided, then it will
force a recache, i.e., remove old value and replace with new value. Ignored if
cache is FALSE.

... Any. Can be used to make a unique cache identity, such as "replicate = 1". This
will be included in the Cache call, so will be unique and thus spades will not
use a cached copy as long as anything passed in ... is unique, i.e., not cached
previously.

Details

The is the workhorse function in the SpaDES package. It runs simulations by implementing the
rules outlined in the simList.

This function gives simple access to two sets of module parameters: .plotInitialTime and with
.plotInitialTime. The primary use of these arguments is to temporarily turn off plotting and
saving. "Temporary" means that the simList is not changed, so it can be used again with the
simList values reinstated. To turn off plotting and saving, use .plotInitialTime = NA or
.saveInitialTime = NA. NOTE: if a module did not use .plotInitialTime or .saveInitialTime,
then these arguments will not do anything.

124 spades

If cache is TRUE, this allows for a seamless way to "save" results of a simulation. The user does
not have to intentionally do any saving manually. Instead, upon a call to spades in which the
simList is identical, the function will simply return the result that would have come if it had been
rerun. Use this with caution, as it will return exactly the result from a previous run, even if there is
stochasticity internally. Caching is only based on the input simList. See also experiment for the
same mechanism, but it can be used with replication. See also the vignette on caching for examples.

Value

Invisibly returns the modified simList object.

debug

debug can be a logical, character vector or a numeric scalar (currently 1 or 2). If debug is specified
and is not FALSE, 2 things could happen: 1) there can be messages sent to console, such as events as
they pass by, and 2) if options("spades.browserOnError" = TRUE) (experimental still) if there
is an error, it will attempt to open a browser in the event where the error occurred. You can edit, and
then press c to continue or Q to quit, plus all other normal interactive browser tools. c will trigger
a reparse and events will continue as scheduled, starting with the one just edited. There may be
some unexpected consequences if the simList objects had already been changed before the error
occurred.

If not specified in the function call, the package option spades.debug is used. The following
options for debug are available:

TRUE the event immediately following will be printed as it runs (equivalent to current(sim)).
function name (as character string) If a function, then it will be run on the simList, e.g., "time" will run time(sim) at each event.
moduleName (as character string) All calls to that module will be entered interactively
eventName (as character string) All calls that have that event name (in any module) will be entered interactively
c(<moduleName>, <eventName>) Only the event in that specified module will be entered into.
Any other R expression expressed as a character string Will be evaluated with access to the simList as ’sim’. If this is more than one character string, then all will be printed to the screen in their sequence.
A numeric scalar, currently 1 or 2 (maybe others) This will print out alternative forms of event information that users may find useful
information that users may find useful

Note

The debug option is primarily intended to facilitate building simulation models by the user. Will
print additional outputs informing the user of updates to the values of various simList slot compo-
nents. See https://github.com/PredictiveEcology/SpaDES/wiki/Debugging for details.

Author(s)

Alex Chubaty and Eliot McIntire

References

Matloff, N. (2011). The Art of R Programming (ch. 7.8.3). San Francisco, CA: No Starch Press,
Inc.. Retrieved from https://www.nostarch.com/artofr.htm

https://github.com/PredictiveEcology/SpaDES/wiki/Debugging
https://www.nostarch.com/artofr.htm

spadesClasses 125

See Also

SpaDES.core-package, experiment for using replication with spades, simInit, and the caching
vignette (very important for reproducibility): https://CRAN.R-project.org/package=SpaDES.
core/vignettes/iii-cache.html which uses Cache.

Examples

Not run:
mySim <- simInit(
times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(
.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")

),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"))

)
spades(mySim)

set default debug printing for the current session
setOption(spades.debug = TRUE)

Different debug options (overrides the package option 'spades.debug')
spades(mySim, debug = TRUE) # Fastest
spades(mySim, debug = "simList")
spades(mySim, debug = "print(table(sim$landscape$Fires[]))")

Can turn off plotting, and inspect the output simList instead
out <- spades(mySim, .plotInitialTime = NA) # much faster
completed(out) # shows completed events

use cache -- simInit should generally be rerun each time a spades call is made
to guarantee that it is identical. Here, run spades call twice, first
time to establish cache, second time to return cached result
for (i in 1:2) {
mySim <- simInit(
times = list(start = 0.0, end = 2.0, timeunit = "year"),
params = list(

.globals = list(stackName = "landscape", burnStats = "nPixelsBurned")
),
modules = list("randomLandscapes", "fireSpread", "caribouMovement"),
paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"))

)
print(system.time(out <- spades(mySim, cache = TRUE)))

}

End(Not run)

spadesClasses Classes defined in SpaDES

https://CRAN.R-project.org/package=SpaDES.core/vignettes/iii-cache.html
https://CRAN.R-project.org/package=SpaDES.core/vignettes/iii-cache.html

126 suppliedElsewhere

Description

These S4 classes are defined within SpaDES. "dot" classes are not exported and are therefore in-
tended for internal use only.

Simulation classes

simList The ’simList’ class
.moduleDeps Descriptor object for specifying SpaDES module dependencies
.simDeps Defines all simulation dependencies for all modules within a SpaDES simulation
————————— ——————————————————————————————

Author(s)

Eliot McIntire and Alex Chubaty

See Also

simInit

suppliedElsewhere Assess whether an object has or will be supplied from elsewhere

Description

When loading objects into a simList, especially during the simInit call, and inside the .inputObjects
functions of modules, it is often useful to know if an object in question will or has been by the user
via the inputs or objects arguments, or by another module’s .inputObjects while preparing
its expected inputs (via expectsInputs in metadata), or if it will be supplied by another module
during its "init" event. In all these cases, it may not be necessary for a given module to load any
default value for its expectsInputs. This function can be used as a check to determine whether
the module needs to proceed in getting and assigning its default value.

Usage

suppliedElsewhere(object, sim, where = c("sim", "user", "initEvent"),
returnWhere = FALSE)

Arguments

object Character vector

sim A simList in which to evaluated whether the object is supplied elsewhere

where Character vector with one to three of "sim", "user", or "initEvent". Default is all
three. Partial matching is used. See details.

times 127

returnWhere Logical, default FALSE, whether the vector of length 3 logical should be returned,
or a logical of length one

Details

where indicates which of three places to search, either "sim" i.e., the simList, which would be
equivalent to is.null(sim$objName), or "user" which would be supplied by the user in the
simInit function call via outputs or inputs (equivalent to (!('defaultColor' %in% sim$.userSuppliedObjNames))),
or "initEvent", which would test whether a module that gets loaded before the present one will
create it as part of its outputs (i.e., as indicated by createsOutputs in that module’s metadata).
There is a caveat to this test, however; if that other event also has the object as an expectsInput,
then it would fail this test, as it also needs it as an input. This final one ("initEvent") does not
explicitly test that the object will be created in the "init" event, only that it is in the outputs of that
module, and that it is a module that is loaded prior to this one.

Examples

mySim <- simInit()
suppliedElsewhere("test", mySim) # FALSE

supplied in the simList
mySim$test <- 1
suppliedElsewhere("test", mySim) # TRUE
test <- 1

supplied from user at simInit time -- note, this object would eventually get into the simList
but the user supplied values come *after* the module's .inputObjects, so
a basic is.null(sim$test) would return TRUE even though the user supplied test
mySim <- simInit(objects = list("test" = test))
suppliedElsewhere("test", mySim) # TRUE

Not run:
Example with prepInputs
Put chunks like this in your .inputObjects
if (!suppliedElsewhere("test", mySim))

sim$test <- Cache(prepInputs, "raster.tif", "downloadedArchive.zip",
destinationPath = dataPath(sim), studyArea = sim$studyArea,
rasterToMatch = sim$otherRasterTemplate, overwrite = TRUE)

End(Not run)

times Time usage in SpaDES

Description

Functions for the simtimes slot of a simList object and its elements. To maintain modularity, the
behaviour of these functions depends on where they are used. In other words, different modules can
have their own timeunit. SpaDES converts these to seconds when running a simulation, but shows
the user time in the units of the model as shown with timeunit(sim)

128 times

Usage

times(x, ...)

S4 method for signature 'simList'
times(x)

times(x) <- value

S4 replacement method for signature 'simList'
times(x) <- value

S3 method for class 'simList'
time(x, unit, ...)

time(x) <- value

S4 replacement method for signature 'simList'
time(x) <- value

end(x, ...)

S3 method for class 'simList'
end(x, unit, ...)

end(x) <- value

S4 replacement method for signature 'simList'
end(x) <- value

start(x, ...)

S3 method for class 'simList'
start(x, unit = NULL, ...)

start(x) <- value

S4 replacement method for signature 'simList'
start(x) <- value

timeunit(x)

S4 method for signature 'simList'
timeunit(x)

timeunit(x) <- value

S4 replacement method for signature 'simList'
timeunit(x) <- value

times 129

timeunits(x)

S4 method for signature 'simList'
timeunits(x)

elapsedTime(x, ...)

S3 method for class 'simList'
elapsedTime(x, byEvent = TRUE, ...)

Arguments

x A simList

... Additional parameters.

value A time, given as a numeric, optionally with a unit attribute, but this will be de-
duced from the model time units or module time units (if used within a module).

unit Character. One of the time units used in SpaDES.

byEvent Logical. If TRUE, the elapsed time will be by module and event; FALSE will
report only by module. Default is TRUE

Details

timeunit will extract the current units of the time used in a simulation (i.e., within a spades call). If
it is set within a simInit, e.g., times=list(start=0, end=52, timeunit = "week"), it will set
the units for that simulation. By default, a simInit call will use the smallest unit contained within
the metadata for the modules being used. If there are parent modules, then the parent module
timeunit will be used even if one of its children is a smaller timeunit. If all modules, including
parents, are set to NA, timeunit defaults to seconds. If parents are set to NA, then the set of modules
defined by that parent module will be given the smallest units of the children.

Currently, available units are "second", "hours", day", "week", "month", and "year" can be used in
the metadata of a module.

The user can also define a new unit. The unit name can be anything, but the function definition must
be of the form dunitName, e.g., dyear or dfortnight. The unit name is the part without the d and
the function name definition includes the d. This new function, e.g., dfortnight <- function(x) lubridate::duration(dday(14))
can be placed anywhere in the search path or in a module.

timeunits will extract the current units of the time of all modules used in a simulation. This is
different from timeunit because it is not necessarily associated with a spades call.

In many cases, the "simpler" use of each of these functions may be slower computationally. For
instance, it is much faster to use time(sim, "year") than time(sim). So as a module developer,
it is advantageous to write out the longer one, minimizing the looking up that R must do.

Value

Returns or sets the value of the slot from the simList object.

130 updateList

Note

These have default behaviour that is based on the calling frame timeunit. When used inside a
module, then the time is in the units of the module. If used in an interactive mode, then the time
will be in the units of the simulation.

Additional methods are provided to access the current, start, and end times of the simulation:

time Current simulation time.
start Simulation start time.
end Simulation end time.
timeunit Simulation timeunit.
timeunits Module timeunits.
times List of all simulation times (current, start, end, timeunit).

Author(s)

Alex Chubaty and Eliot McIntire

See Also

SpaDES.core-package, specifically the section 1.2.5 on Simulation times.

Other functions to access elements of a simList object: .addDepends, doEvent.checkpoint,
envir, events, globals, inputs, modules, objs, packages, params, paths, progressInterval

updateList Update elements of a named list with elements of a second named list

Description

Merge two named list based on their named entries. Where any element matches in both lists, the
value from the second list is used in the updated list. Subelements are not examined and are simply
replaced. If one list is empty, then it returns the other one, unchanged.

Usage

updateList(x, y)

S4 method for signature 'list,list'
updateList(x, y)

S4 method for signature '`NULL`,list'
updateList(x, y)

S4 method for signature 'list,`NULL`'
updateList(x, y)

S4 method for signature '`NULL`,`NULL`'
updateList(x, y)

zipModule 131

Arguments

x a named list

y a named list

Value

A named list, with elements sorted by name. The values of matching elements in list y replace the
values in list x.

Author(s)

Alex Chubaty

Examples

L1 <- list(a = "hst", b = NA_character_, c = 43)
L2 <- list(a = "gst", c = 42, d = list(letters))
updateList(L1, L2)

updateList(L1, NULL)
updateList(NULL, L2)
updateList(NULL, NULL) # should return empty list

zipModule Create a zip archive of a module subdirectory

Description

The most common use of this would be from a "modules" directory, rather than inside a given
module.

Usage

zipModule(name, path, version, data = FALSE, ...)

S4 method for signature 'character,character,character'
zipModule(name, path, version,
data = FALSE, ...)

S4 method for signature 'character,missing,character'
zipModule(name, path, version,
data = FALSE, ...)

S4 method for signature 'character,missing,missing'
zipModule(name, path, version,
data = FALSE, ...)

132 zipModule

S4 method for signature 'character,character,missing'
zipModule(name, path, version,
data = FALSE, ...)

Arguments

name Character string giving the module name.

path A file path to a directory containing the module subdirectory.

version The module version.

data Logical. If TRUE, then the data subdirectory will be included in the zip. Default
is FALSE.

... Additional arguments to zip: e.g., add "-q" using flags="-q -r9X" (the de-
fault flags are "-r9X").

Author(s)

Eliot McIntire and Alex Chubaty

Index

∗Topic datasets
.quickCheck, 20
inSeconds, 68
moduleDefaults, 74

.Random.seed, 39

.addChangedAttr, 13

.addChangedAttr,simList-method, 13

.addDepends, 39, 45, 49, 60, 65, 78, 88, 90,
92, 95, 104, 130

.addTagsToOutput, 13, 14

.addTagsToOutput,simList-method, 13

.cacheMessage, 14

.cacheMessage,simList-method, 14

.checkCacheRepo, 15

.checkCacheRepo,list-method, 15

.checkpointSave (doEvent.checkpoint), 38

.fileExtensions, 15

.findSimList, 17

.first (priority), 103

.highest (priority), 103

.last (priority), 103

.lowest (priority), 103

.moduleDeps, 121, 126

.normal (priority), 103

.objSizeInclEnviros, 18

.objSizeInclEnviros,simList-method, 18

.parseElems, 18

.parseElems,simList-method, 18

.preDigestByClass, 19

.preDigestByClass,simList-method, 19

.prepareOutput, 19, 20

.prepareOutput,simList-method, 19

.quickCheck, 20

.robustDigest,simList-method, 20

.saveFileExtensions (.fileExtensions),
15

.simDeps, 126

.spadesTimes (inSeconds), 68

.tagsByClass, 22

.tagsByClass,simList-method, 22

adj, 8
adjacent, 8
agentLocation, 9
all.equal, 23
all.equal.simList, 22
append_attr, 23
append_attr,list,list-method

(append_attr), 23

beginCluster, 50, 51

Cache, 10, 125
Cache (.robustDigest,simList-method), 20
cache, 10
cachePath, 6
cachePath (paths), 93
cachePath,simList-method (paths), 93
cachePath<- (paths), 93
cachePath<-,simList-method (paths), 93
checkModule, 24
checkModule,character,character-method

(checkModule), 24
checkModule,character,missing-method

(checkModule), 24
checkModuleLocal, 24
checkModuleLocal,character,ANY,ANY-method

(checkModuleLocal), 24
checkModuleLocal,character,character,character-method

(checkModuleLocal), 24
checkObject, 9, 25
checkObject,missing,ANY,missing,ANY-method

(checkObject), 25
checkObject,simList,character,missing,character-method

(checkObject), 25
checkObject,simList,character,missing,missing-method

(checkObject), 25
checkObject,simList,missing,ANY,missing-method

(checkObject), 25

133

134 INDEX

checkObject,simList,missing,Raster,character-method
(checkObject), 25

checkParams, 26
checkParams,simList,list-method

(checkParams), 26
checkPath, 9
checkpointFile, 7
checkpointFile (doEvent.checkpoint), 38
checkpointFile,simList-method

(doEvent.checkpoint), 38
checkpointFile<- (doEvent.checkpoint),

38
checkpointFile<-,simList-method

(doEvent.checkpoint), 38
checkpointInterval, 7
checkpointInterval

(doEvent.checkpoint), 38
checkpointInterval,simList-method

(doEvent.checkpoint), 38
checkpointInterval<-

(doEvent.checkpoint), 38
checkpointInterval<-,simList-method

(doEvent.checkpoint), 38
checkpointLoad (doEvent.checkpoint), 38
Checksums, 27
checksums, 7, 27, 41
checkTimeunit (inSeconds), 68
checkTimeunit,character,environment-method

(inSeconds), 68
checkTimeunit,character,missing-method

(inSeconds), 68
cir, 8
citation, 7, 62
citation (inputObjects), 61
citation,character-method

(inputObjects), 61
citation,simList-method (inputObjects),

61
classFilter, 28
classFilter,character,character,character,environment-method

(classFilter), 28
classFilter,character,character,character,missing-method

(classFilter), 28
classFilter,character,character,missing,environment-method

(classFilter), 28
classFilter,character,character,missing,missing-method

(classFilter), 28
clearCache, 10

clearPlot, 10
clearStubArtifacts, 10
clickCoordinates, 10
clickExtent, 10
clickValues, 10
completed, 6
completed (events), 47
completed,simList,character-method

(events), 47
completed,simList,missing-method

(events), 47
completed<- (events), 47
completed<-,simList-method (events), 47
conditionalEvents, 111
conditionalEvents (events), 47
conditionalEvents,simList,character-method

(events), 47
conditionalEvents,simList,missing-method

(events), 47
convertTimeunit (inSeconds), 68
Copy, 30
copy, 7
Copy,simList-method, 30
copyModule, 31
copyModule,character,character,character-method

(copyModule), 31
copyModule,character,character,missing-method

(copyModule), 31
createsOutput, 7, 32
createsOutput,ANY,ANY,ANY-method

(createsOutput), 32
createsOutput,character,character,character-method

(createsOutput), 32
crw, 8
current, 6
current (events), 47
current,simList,character-method

(events), 47
current,simList,missing-method

(events), 47
current<- (events), 47
current<-,simList-method (events), 47

data.frame, 121
data.table, 48, 121, 122
dataPath (paths), 93
dataPath,simList-method (paths), 93
dday (dyears), 43
defineModule, 7, 33, 76

INDEX 135

defineModule,simList,list-method
(defineModule), 33

defineParameter, 7, 33, 35
defineParameter,character,character,ANY,ANY,ANY,character-method

(defineParameter), 35
defineParameter,character,character,ANY,missing,missing,character-method

(defineParameter), 35
defineParameter,missing,missing,missing,missing,missing,missing-method

(defineParameter), 35
DEoptim, 99
DEoptim.control, 98
depends, 6, 77
depends (modules), 77
depends,simList-method (modules), 77
depends<- (modules), 77
depends<-,simList-method (modules), 77
depsEdgeList, 8, 36
depsEdgeList,simList,logical-method

(depsEdgeList), 36
depsEdgeList,simList,missing-method

(depsEdgeList), 36
depsGraph, 8, 37
depsGraph,simList,logical-method

(depsGraph), 37
depsGraph,simList,missing-method

(depsGraph), 37
dev, 10
dhour (dyears), 43
directionFromEachPoint, 8
distanceFromEachPoint, 8
divergentColors, 9
dmonth (dyears), 43
dmonths (dyears), 43
dmonths,numeric-method (dyears), 43
dNA (dyears), 43
dNA,ANY-method (dyears), 43
documentation, 8
documentation (inputObjects), 61
documentation,simList-method

(inputObjects), 61
doEvent.checkpoint, 38, 45, 49, 60, 65, 78,

88, 90, 92, 95, 104, 130
downloadData, 39
downloadData,character,character,logical-method

(downloadData), 39
downloadData,character,character,missing-method

(downloadData), 39
downloadData,character,missing,logical-method

(downloadData), 39
downloadData,character,missing,missing-method

(downloadData), 39
downloadModule, 7, 41, 41
downloadModule,character,ANY,ANY,ANY,ANY,ANY,ANY,ANY-method

(downloadModule), 41
downloadModule,character,character,character,character,logical,logical,ANY,logical-method

(downloadModule), 41
downloadModule,character,missing,missing,missing,missing,missing,ANY,ANY-method

(downloadModule), 41
dsecond (dyears), 43
dweek (dyears), 43
dweeks (dyears), 43
dweeks,numeric-method (dyears), 43
dyear (dyears), 43
dyears, 43
dyears,numeric-method (dyears), 43

elapsedTime, 6
elapsedTime (times), 127
end, 6
end (times), 127
end<- (times), 127
end<-,simList-method (times), 127
endCluster, 51
envir, 7, 39, 44, 49, 60, 65, 78, 88, 90, 92, 95,

104, 130
envir,simList-method (envir), 44
envir<- (envir), 44
envir<-,simList-method (envir), 44
equalExtent, 8
eventDiagram, 10, 46
eventDiagram,simList,missing,character-method

(eventDiagram), 46
eventDiagram,simList,missing,missing-method

(eventDiagram), 46
eventDiagram,simList,numeric,character-method

(eventDiagram), 46
events, 6, 39, 45, 47, 60, 65, 78, 88, 90, 92,

95, 104, 115, 130
events,simList,character-method

(events), 47
events,simList,missing-method (events),

47
events<- (events), 47
events<-,simList-method (events), 47
expectsInput, 7, 49
expectsInput,ANY,ANY,ANY,ANY-method

(expectsInput), 49

136 INDEX

expectsInput,character,character,character,character-method
(expectsInput), 49

expectsInput,character,character,character,missing-method
(expectsInput), 49

experiment, 5, 50, 120, 125
experiment,simList-method (experiment),

50
extractURL, 57
extractURL,character,missing-method

(extractURL), 57
extractURL,character,simList-method

(extractURL), 57

fileName, 58

G (globals), 60
G,simList-method (globals), 60
G<- (globals), 60
G<-,simList-method (globals), 60
gaussMap, 9
getColors, 9
getModuleVersion, 7, 59
getModuleVersion,character,character-method

(getModuleVersion), 59
getModuleVersion,character,missing-method

(getModuleVersion), 59
globals, 5, 39, 45, 49, 60, 65, 78, 88, 90, 92,

95, 104, 130
globals,simList-method (globals), 60
globals<- (globals), 60
globals<-,simList-method (globals), 60
gpar, 95

heading, 8

igraph, 38, 75
inherits, 28
initialize,simList-method, 61
initialize,simList_-method

(initialize,simList-method), 61
initiateAgents, 9
inputArgs (inputs), 62
inputArgs,simList-method (inputs), 62
inputArgs<- (inputs), 62
inputArgs<-,simList-method (inputs), 62
inputObjects, 8, 61
inputObjects,simList-method

(inputObjects), 61
inputPath, 6

inputPath (paths), 93
inputPath,simList-method (paths), 93
inputPath<- (paths), 93
inputPath<-,simList-method (paths), 93
inputs, 5, 16, 39, 45, 49, 60, 62, 77, 78, 88,

90, 92, 95, 104, 114, 116, 119, 130
inputs,simList-method (inputs), 62
inputs<- (inputs), 62
inputs<-,simList-method (inputs), 62
inRange, 9
inSeconds, 68

keepCache, 10

layerNames, 9
library, 26
loadFiles, 11
loadFiles (.fileExtensions), 15
loadFiles,missing,ANY-method

(.fileExtensions), 15
loadFiles,missing,missing-method

(.fileExtensions), 15
loadFiles,simList,missing-method

(.fileExtensions), 15
loadPackages, 9, 69
loadPackages,character-method

(loadPackages), 69
loadPackages,list-method

(loadPackages), 69
loadPackages,NULL-method

(loadPackages), 69
ls, 6
ls.str, 6

makeCluster, 100
makeLines, 8
makeMemoisable, 71
makeMemoisable.simList, 70
maxTimeunit, 71
maxTimeunit,simList-method

(maxTimeunit), 71
mermaid, 47, 85
minTimeunit, 72
minTimeunit,list-method (minTimeunit),

72
minTimeunit,simList-method

(minTimeunit), 72
moduleCoverage, 72

INDEX 137

moduleCoverage,character,character-method
(moduleCoverage), 72

moduleCoverage,character,missing-method
(moduleCoverage), 72

moduleDefaults, 74
moduleDiagram, 10, 74, 85
moduleDiagram,simList,character,logical-method

(moduleDiagram), 74
moduleDiagram,simList,missing,ANY-method

(moduleDiagram), 74
moduleGraph, 74, 75, 75
moduleGraph,simList,logical-method

(moduleGraph), 75
moduleGraph,simList,missing-method

(moduleGraph), 75
moduleMetadata, 7, 76, 79
moduleMetadata,ANY,ANY,ANY-method

(moduleMetadata), 76
moduleMetadata,missing,character,character-method

(moduleMetadata), 76
moduleMetadata,missing,character,missing-method

(moduleMetadata), 76
modulePath, 6
modulePath (paths), 93
modulePath,simList-method (paths), 93
modulePath<- (paths), 93
modulePath<-,simList-method (paths), 93
modules, 6, 39, 45, 49, 60, 65, 77, 77, 88, 90,

92, 95, 104, 116, 130
modules,simList-method (modules), 77
modules<- (modules), 77
modules<-,simList-method (modules), 77
moduleVersion, 78
moduleVersion,character,character,missing-method

(moduleVersion), 78
moduleVersion,character,missing,missing-method

(moduleVersion), 78
moduleVersion,character,missing,simList-method

(moduleVersion), 78
move, 8

NA, 36
newModule, 7, 73, 80, 82–84
newModule,character,character-method

(newModule), 80
newModule,character,missing-method

(newModule), 80
newModuleCode, 81, 82, 83, 84

newModuleCode,character,character,logical,character,character-method
(newModuleCode), 82

newModuleDocumentation, 7, 81, 82, 82, 84
newModuleDocumentation,character,character,logical,character,character-method

(newModuleDocumentation), 82
newModuleDocumentation,character,character,missing,ANY,ANY-method

(newModuleDocumentation), 82
newModuleDocumentation,character,missing,logical,ANY,ANY-method

(newModuleDocumentation), 82
newModuleDocumentation,character,missing,missing,ANY,ANY-method

(newModuleDocumentation), 82
newModuleTests, 81–83, 83
newModuleTests,character,character,logical-method

(newModuleTests), 83
newPlot, 11
newProgressBar, 84
numAgents, 9
numeric_version, 33
numLayers, 9

objectDiagram, 10, 74, 85
objectDiagram,simList-method

(objectDiagram), 85
objects, 6
objectSynonyms, 85
objs, 6, 39, 45, 49, 60, 65, 78, 87, 90, 92, 95,

104, 116, 130
objs,simList-method (objs), 87
objs<- (objs), 87
objs<-,simList-method (objs), 87
objSize.simList, 88
openModules, 7, 88
openModules,character,character-method

(openModules), 88
openModules,character,missing-method

(openModules), 88
openModules,missing,character-method

(openModules), 88
openModules,missing,missing-method

(openModules), 88
openModules,simList,missing-method

(openModules), 88
options, 11
outputArgs (inputs), 62
outputArgs,simList-method (inputs), 62
outputArgs<- (inputs), 62
outputArgs<-,simList-method (inputs), 62
outputObjects, 8
outputObjects (inputObjects), 61

138 INDEX

outputObjects,simList-method
(inputObjects), 61

outputPath, 6
outputPath (paths), 93
outputPath,simList-method (paths), 93
outputPath<- (paths), 93
outputPath<-,simList-method (paths), 93
outputs, 5, 114, 116, 119
outputs (inputs), 62
outputs,simList-method (inputs), 62
outputs<- (inputs), 62
outputs<-,simList-method (inputs), 62

P, 5, 36
P (params), 91
packageDescription, 62
packages, 6, 39, 45, 49, 60, 65, 78, 88, 90, 92,

95, 99, 104, 130
packages,ANY-method (packages), 90
paddedFloatToChar, 9, 91
parameters (params), 91
parameters,simList-method (params), 91
params, 5, 36, 39, 45, 49, 60, 65, 78, 88, 90,

91, 95, 104, 116, 130
params,simList-method (params), 91
params<- (params), 91
params<-,simList-method (params), 91
paths, 6, 39, 45, 49, 60, 65, 78, 88, 90, 92, 93,

104, 116, 130
paths,simList-method (paths), 93
paths<- (paths), 93
paths<-,simList-method (paths), 93
person, 33
Plot, 10, 95–97
Plot,simList-method, 95
POM, 97
POM,simList,character-method (POM), 97
prepInputs, 40, 41
preProcess, 40
priority, 103, 110, 112
probInit, 9
progressInterval, 7, 39, 45, 49, 60, 65, 78,

88, 90, 92, 95, 104, 130
progressInterval,simList-method

(progressInterval), 104
progressInterval<- (progressInterval),

104
progressInterval<-,simList-method

(progressInterval), 104

progressType, 7
progressType (progressInterval), 104
progressType,simList-method

(progressInterval), 104
progressType<- (progressInterval), 104
progressType<-,simList-method

(progressInterval), 104

randomPolygons, 9
raster, 106
rasterizeReduced, 9
rasterToMemory, 11, 105
rasterToMemory,ANY-method

(rasterToMemory), 105
remoteFileSize, 106
rePlot, 11
report, 73
reqdPkgs, 8
reqdPkgs (inputObjects), 61
reqdPkgs,simList-method (inputObjects),

61
Require, 33
require, 70
rings, 8
rndstr, 107
rndstr,missing,missing,logical-method

(rndstr), 107
rndstr,missing,missing,missing-method

(rndstr), 107
rndstr,missing,numeric,logical-method

(rndstr), 107
rndstr,missing,numeric,missing-method

(rndstr), 107
rndstr,numeric,missing,logical-method

(rndstr), 107
rndstr,numeric,missing,missing-method

(rndstr), 107
rndstr,numeric,numeric,logical-method

(rndstr), 107
rndstr,numeric,numeric,missing-method

(rndstr), 107
robustDigest, 21

saveFiles, 11, 108
saveRDS, 64
saveSimList (.fileExtensions), 15
scheduleConditionalEvent, 5, 110, 112
scheduleEvent, 5, 111, 111
setColors, 9

INDEX 139

setPaths, 31
setProgressBar (newProgressBar), 84
show,simList-method, 113
showCache, 10
simInit, 5, 33, 50, 53, 100, 104, 108, 113,

120, 125, 126
simInit,ANY,ANY,ANY,ANY,ANY,ANY,ANY,ANY-method

(simInit), 113
simInit,ANY,ANY,ANY,character,ANY,ANY,ANY,ANY-method

(simInit), 113
simInit,ANY,ANY,character,ANY,ANY,ANY,ANY,ANY-method

(simInit), 113
simInit,list,list,list,list,list,data.frame,data.frame,character-method

(simInit), 113
simInitAndExperiment

(simInitAndSpades), 118
simInitAndSpades, 118
simList, 5, 6, 26, 109, 126
simList (simList-class), 120
simList-accessors-envir, 121
simList-accessors-envir (envir), 44
simList-accessors-events, 121
simList-accessors-events (events), 47
simList-accessors-inout, 121
simList-accessors-inout (inputs), 62
simList-accessors-metadata

(inputObjects), 61
simList-accessors-modules, 121
simList-accessors-modules (modules), 77
simList-accessors-objects, 121
simList-accessors-objects (objs), 87
simList-accessors-packages (packages),

90
simList-accessors-params, 121
simList-accessors-params (params), 91
simList-accessors-paths, 121
simList-accessors-paths (paths), 93
simList-accessors-times, 121
simList-accessors-times (times), 127
simList-class, 120
simList_, 122
spades, 5, 10, 50, 53, 94, 100, 104, 116, 120,

122
spades,ANY,ANY,ANY,logical-method

(spades), 122
spades,simList,ANY,ANY,missing-method

(spades), 122
SpaDES.core (SpaDES.core-package), 4

SpaDES.core-package, 4
spadesClasses, 125
spadesTimes (inSeconds), 68
SpatialPoints*, 8
specificNumPerPatch, 8
spokes, 8
spread, 8
start, 6
start (times), 127
start<- (times), 127
start<-,simList-method (times), 127
stri_pad, 91
suppliedElsewhere, 126

time, 6
time.simList (times), 127
time<- (times), 127
time<-,simList-method (times), 127
times, 6, 39, 45, 49, 60, 65, 78, 88, 90, 92, 95,

104, 116, 127
times,simList-method (times), 127
times<- (times), 127
times<-,simList-method (times), 127
timeunit, 7
timeunit (times), 127
timeunit,simList-method (times), 127
timeunit<- (times), 127
timeunit<-,simList-method (times), 127
timeunits (times), 127
timeunits,simList-method (times), 127
transitions, 9

unmakeMemoisable.simList_
(makeMemoisable.simList), 70

updateList, 9, 130
updateList,list,list-method

(updateList), 130
updateList,list,NULL-method

(updateList), 130
updateList,NULL,list-method

(updateList), 130
updateList,NULL,NULL-method

(updateList), 130

wrap, 8

zip, 132
zipModule, 7, 42, 43, 59, 131
zipModule,character,character,character-method

(zipModule), 131

140 INDEX

zipModule,character,character,missing-method
(zipModule), 131

zipModule,character,missing,character-method
(zipModule), 131

zipModule,character,missing,missing-method
(zipModule), 131

	SpaDES.core-package
	.addChangedAttr,simList-method
	.addTagsToOutput,simList-method
	.cacheMessage,simList-method
	.checkCacheRepo,list-method
	.fileExtensions
	.findSimList
	.objSizeInclEnviros,simList-method
	.parseElems,simList-method
	.preDigestByClass,simList-method
	.prepareOutput,simList-method
	.quickCheck
	.robustDigest,simList-method
	.tagsByClass,simList-method
	all.equal.simList
	append_attr
	checkModule
	checkModuleLocal
	checkObject
	checkParams
	checksums
	classFilter
	Copy,simList-method
	copyModule
	createsOutput
	defineModule
	defineParameter
	depsEdgeList
	depsGraph
	doEvent.checkpoint
	downloadData
	downloadModule
	dyears
	envir
	eventDiagram
	events
	expectsInput
	experiment
	extractURL
	fileName
	getModuleVersion
	globals
	initialize,simList-method
	inputObjects
	inputs
	inSeconds
	loadPackages
	makeMemoisable.simList
	maxTimeunit
	minTimeunit
	moduleCoverage
	moduleDefaults
	moduleDiagram
	moduleGraph
	moduleMetadata
	modules
	moduleVersion
	newModule
	newModuleCode
	newModuleDocumentation
	newModuleTests
	newProgressBar
	objectDiagram
	objectSynonyms
	objs
	objSize.simList
	openModules
	packages
	paddedFloatToChar
	params
	paths
	Plot,simList-method
	POM
	priority
	progressInterval
	rasterToMemory
	remoteFileSize
	rndstr
	saveFiles
	scheduleConditionalEvent
	scheduleEvent
	show,simList-method
	simInit
	simInitAndSpades
	simList-class
	spades
	spadesClasses
	suppliedElsewhere
	times
	updateList
	zipModule
	Index

