CRAN Package Check Results for Package metafor

Last updated on 2019-05-01 01:51:52 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 2.0-0 35.98 256.54 292.52 OK
r-devel-linux-x86_64-debian-gcc 2.0-0 32.33 174.52 206.85 ERROR
r-devel-linux-x86_64-fedora-clang 2.0-0 356.94 OK
r-devel-linux-x86_64-fedora-gcc 2.0-0 357.75 OK
r-patched-linux-x86_64 2.0-0 33.94 254.09 288.03 OK
r-patched-solaris-x86 2.0-0 437.90 OK
r-release-linux-x86_64 2.0-0 33.82 256.67 290.49 OK
r-release-windows-ix86+x86_64 2.0-0 69.00 333.00 402.00 OK
r-release-osx-x86_64 2.0-0 OK
r-oldrel-windows-ix86+x86_64 2.0-0 59.00 313.00 372.00 OK
r-oldrel-osx-x86_64 2.0-0 OK

Additional issues

OpenBLAS

Check Details

Version: 2.0-0
Check: examples
Result: ERROR
    Running examples in ‘metafor-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: dat.pritz1997
    > ### Title: Studies on the Effectiveness of Hyperdynamic Therapy for
    > ### Treating Cerebral Vasospasm
    > ### Aliases: dat.pritz1997
    > ### Keywords: datasets
    >
    > ### ** Examples
    >
    > ### load data
    > dat <- get(data(dat.pritz1997))
    >
    > ### computation of "weighted average" in Zhou et al. (1999), Table IV
    > dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat, add=0)
    > theta.hat <- sum(dat$ni * dat$yi) / sum(dat$ni)
    > se.theta.hat <- sqrt(sum(dat$ni^2 * dat$vi) / sum(dat$ni)^2)
    > ci.lb <- theta.hat - 1.96*se.theta.hat
    > ci.ub <- theta.hat + 1.96*se.theta.hat
    > round(c(estimate = theta.hat, se = se.theta.hat, ci.lb = ci.lb, ci.ub = ci.ub), 4)
    estimate se ci.lb ci.ub
     0.7546 0.0224 0.7106 0.7986
    >
    > ### this is identical to a FE model with sample size weights
    > rma(yi, vi, weights=ni, method="FE", data=dat)
    Warning in rma(yi, vi, weights = ni, method = "FE", data = dat) :
     There are outcomes with non-positive sampling variances.
    Warning in rma(yi, vi, weights = ni, method = "FE", data = dat) :
     Cannot compute Q-test, I^2, or H^2 with non-positive sampling variances.
    
    Fixed-Effects Model (k = 14)
    
    Model Results:
    
    estimate se zval pval ci.lb ci.ub
     0.7546 0.0224 33.6491 <.0001 0.7106 0.7986 ***
    
    ---
    Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    
    >
    > ### random-effects model with raw proportions
    > dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat)
    > res <- rma(yi, vi, data=dat)
    > predict(res)
     pred se ci.lb ci.ub cr.lb cr.ub
     0.7968 0.0423 0.7138 0.8797 0.5306 1.0629
    >
    > ### random-effects model with logit transformed proportions
    > dat <- escalc(measure="PLO", xi=xi, ni=ni, data=dat)
    > res <- rma(yi, vi, data=dat)
    > predict(res, transf=transf.ilogit)
     pred ci.lb ci.ub cr.lb cr.ub
     0.7575 0.6605 0.8337 0.4661 0.9179
    >
    > ### mixed-effects logistic regression model
    > res <- rma.glmm(measure="PLO", xi=xi, ni=ni, data=dat)
    Error in t(b2.QE) %*% chol2inv(chol.h) : non-conformable arguments
    Calls: rma.glmm
    Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 2.0-0
Check: tests
Result: ERROR
     Running ‘testthat.R’ [31s/43s]
    Running the tests in ‘tests/testthat.R’ failed.
    Complete output:
     > ### to also run skip_on_cran() tests, uncomment:
     > #Sys.setenv(NOT_CRAN="true")
     >
     > library(testthat)
     > library(metafor)
     Loading required package: Matrix
     Loading 'metafor' package (version 2.0-0). For an overview
     and introduction to the package please type: help(metafor).
     > test_check("metafor", reporter="summary")
     Checking analysis example: berkey1995: ...........
     Checking analysis example: berkey1998: ..............
     Checking analysis example: dersimonian2007: S
     Checking analysis example: gleser2009: .......................
     Checking analysis example: henmi2010: .......
     Checking analysis example: jackson2014: SS
     Checking analysis example: konstantopoulos2011: ............................S.....SS
     Checking analysis example: law2016: SS
     Checking analysis example: lipsey2001: .........................
     Checking analysis example: miller1978: ...........S
     Checking analysis example: morris2008: ..............
     Checking analysis example: normand1999: ..............................
     Checking analysis example: raudenbush1985: ..........S.............S
     Checking analysis example: raudenbush2009: ..................
     Checking analysis example: rothman2008: .............................S.....................S..............S
     Checking analysis example: stijnen2010: ............S.......SS............S......S
     Checking analysis example: vanhouwelingen1993: SSS
     Checking analysis example: vanhouwelingen2002: ...........SS...S.....................
     Checking analysis example: viechtbauer2005: ........
     Checking analysis example: viechtbauer2007a: .....S...SS
     Checking analysis example: viechtbauer2007b: ............S
     Checking analysis example: yusuf1985: S.....
     Checking misc: anova() function: ...........
     Checking misc: confint() function: ......
     Checking misc: escalc() function: ................................................................
     Checking misc: computations of fit statistics: .......................
     Checking misc: fsn() function: .........
     Checking misc: funnel() functions: S
     Checking misc: handling of edge cases due to zeros: .......S.......S
     Checking misc: influence() and related functions: ...........
     Checking misc: head.list.rma() and tail.list.rma() functions: ...
     Checking misc: rma.mh() against metan with 'dat.bcg': .....................
     Checking misc: rma.peto() against metan with 'dat.bcg': ........
     Checking misc: rma.uni() against metan with 'dat.bcg': .............................................
     Checking misc: permutest() function: SSS
     Checking misc: plot() function: SSS
     Checking misc: predict() function: ......
     Checking misc: regtest() and ranktest() functions: ........
     Checking misc: residuals() function: .............1
     Checking misc: proper handling of errors in rma(): ......
     Checking misc: rma.glmm() function: ............
     Checking misc: proper handling of missing values: 2
     Checking misc: rma.mv() function: .............
     Checking misc: rma() function: ....
     Checking misc: rma() function with location-scale models: ...............
     Checking misc: rma.uni() against direct computations: .....
     Checking misc: robust() function: ......
     Checking misc: .setlab() function: S
     Checking misc: to.long() function: ..............
     Checking misc: transformation functions: .......................
     Checking misc: update() function: ....3
     Checking misc: vcov() function: ....
     Checking misc: weights() function: ..........................
     Checking plots example: Baujat plot: S
     Checking plots example: Caterpillar plot: S
     Checking plots example: contour-enhanced funnel plot: S
     Checking plots example: cumulative forest plot: SSS
     Checking plots example: forest plot with subgroups: S
     Checking plots example: funnel plot variations: S
     Checking plots example: funnel plot with trim and fill: S
     Checking plots example: GOSH plot: S
     Checking plots example: L'Abbe plot: S
     Checking plots example: meta-analytic scatterplot: S
     Checking plots example: normal QQ plots: SSS.
     Checking plots example: plot of cumulative results: S
     Checking plots example: plot of influence diagnostics: S
     Checking plots example: radial (Galbraith) plot: S
     Checking tip: rma() results match up with those from lm(): ............
     Checking tip: rma() results match up with those from lm() and lme(): ..........
    
     ══ Skipped ═════════════════════════════════════════════════════════════════════
     1. results are correct for the CLASP example. (@test_analysis_example_dersimonian2007.r#15) - On CRAN
    
     2. confint() gives correct results for example 1 in Jackson et al. (2014). (@test_analysis_example_jackson2014.r#7) - On CRAN
    
     3. confint() gives correct results for example 2 in Jackson et al. (2014). (@test_analysis_example_jackson2014.r#47) - On CRAN
    
     4. profiling works for the three-level random-effects model (multilevel parameterization). (@test_analysis_example_konstantopoulos2011.r#109) - On CRAN
    
     5. profiling works for the three-level random-effects model (multivariate parameterization). (@test_analysis_example_konstantopoulos2011.r#140) - On CRAN
    
     6. BLUPs are calculated correctly for the three-level random-effects model (multilevel parameterization). (@test_analysis_example_konstantopoulos2011.r#155) - On CRAN
    
     7. results are correct for example 1. (@test_analysis_example_law2016.r#20) - On CRAN
    
     8. results are correct for example 2. (@test_analysis_example_law2016.r#93) - On CRAN
    
     9. back-transformations work as intended for individual studies and the model estimate. (@test_analysis_example_miller1978.r#78) - On CRAN
    
     10. results are correct for the random-effects model. (@test_analysis_example_raudenbush1985.r#38) - On CRAN
    
     11. results are correct for the mixed-effects model. (@test_analysis_example_raudenbush1985.r#89) - On CRAN
    
     12. results are correct for Mantel-Haenszel method. (@test_analysis_example_rothman2008.r#132) - On CRAN
    
     13. results are correct for Mantel-Haenszel method. (@test_analysis_example_rothman2008.r#267) - On CRAN
    
     14. results are correct for Mantel-Haenszel method. (@test_analysis_example_rothman2008.r#360) - On CRAN
    
     15. results for the binomial-normal normal are correct (measure=='PLO') (@test_analysis_example_stijnen2010.r#38) - On CRAN
    
     16. results for the conditional logistic model with exact likelihood are correct (measure=='OR') (@test_analysis_example_stijnen2010.r#81) - On CRAN
    
     17. results for the conditional logistic model with approximate likelihood are correct (measure=='OR') (@test_analysis_example_stijnen2010.r#99) - On CRAN
    
     18. results for the Poisson-normal model are correct (measure=='IRLN') (@test_analysis_example_stijnen2010.r#151) - On CRAN
    
     19. results for the Poisson-normal model are correct (measure=='IRR') (@test_analysis_example_stijnen2010.r#194) - On CRAN
    
     20. the log likelihood plot can be created. (@test_analysis_example_vanhouwelingen1993.r#12) - On CRAN
    
     21. results of the fixed-effects conditional logistic model are correct. (@test_analysis_example_vanhouwelingen1993.r#23) - On CRAN
    
     22. results of the random-effects conditional logistic model are correct. (@test_analysis_example_vanhouwelingen1993.r#48) - On CRAN
    
     23. profile plot for tau^2 can be drawn. (@test_analysis_example_vanhouwelingen2002.r#56) - On CRAN
    
     24. forest plot of observed log(OR)s and corresponding BLUPs can be drawn. (@test_analysis_example_vanhouwelingen2002.r#70) - On CRAN
    
     25. L'Abbe plot can be drawn. (@test_analysis_example_vanhouwelingen2002.r#109) - On CRAN
    
     26. CI is correct for the profile likelihood method. (@test_analysis_example_viechtbauer2007a.r#73) - On CRAN
    
     27. CI is correct for the parametric bootstrap method. (@test_analysis_example_viechtbauer2007a.r#110) - On CRAN
    
     28. CI is correct for the non-parametric bootstrap method. (@test_analysis_example_viechtbauer2007a.r#135) - On CRAN
    
     29. results are correct for the mixed-effects model. (@test_analysis_example_viechtbauer2007b.r#76) - On CRAN
    
     30. log likelihood plot can be drawn. (@test_analysis_example_yusuf1985.r#13) - On CRAN
    
     31. funnel() works correctly. (@test_misc_funnel.r#7) - On CRAN
    
     32. rma.peto(), rma.mh(), and rma.glmm() handle outcome1 never occurring properly. (@test_misc_handling_of_edge_cases_due_to_zeros.r#21) - On CRAN
    
     33. rma.peto(), rma.mh(), and rma.glmm() handle outcome2 never occurring properly. (@test_misc_handling_of_edge_cases_due_to_zeros.r#43) - On CRAN
    
     34. permutest() gives correct results for a random-effects model. (@test_misc_permutest.r#13) - On CRAN
    
     35. permutest() gives correct results for a mixed-effects model. (@test_misc_permutest.r#43) - On CRAN
    
     36. permutest() gives correct results for example in Follmann & Proschan (1999). (@test_misc_permutest.r#67) - On CRAN
    
     37. plot can be drawn for rma(). (@test_misc_plot_rma.r#5) - Empty test
    
     38. plot can be drawn for rma.mh(). (@test_misc_plot_rma.r#17) - Empty test
    
     39. plot can be drawn for rma.peto(). (@test_misc_plot_rma.r#25) - Empty test
    
     40. .setlab() works correctly together with forest(). (@test_misc_setlab.r#8) - Empty test
    
     41. plot can be drawn. (@test_plots_baujat_plot.r#7) - Empty test
    
     42. plot can be drawn. (@test_plots_caterpillar_plot.r#7) - Empty test
    
     43. plot can be drawn. (@test_plots_contour-enhanced_funnel_plot.r#7) - Empty test
    
     44. plot can be drawn. (@test_plots_cumulative_forest_plot.r#7) - Empty test
    
     45. plot can be drawn. (@test_plots_cumulative_forest_plot.r#43) - Empty test
    
     46. plot can be drawn. (@test_plots_cumulative_forest_plot.r#76) - Empty test
    
     47. plot can be drawn. (@test_plots_forest_plot_with_subgroups.r#7) - Empty test
    
     48. plot can be drawn. (@test_plots_funnel_plot_variations.r#7) - Empty test
    
     49. plot can be drawn. (@test_plots_funnel_plot_with_trim_and_fill.r#7) - Empty test
    
     50. plot can be drawn. (@test_plots_gosh.r#7) - Empty test
    
     51. plot can be drawn. (@test_plots_labbe_plot.r#7) - Empty test
    
     52. plot can be drawn. (@test_plots_meta-analytic_scatterplot.r#7) - Empty test
    
     53. plot can be drawn for rma(). (@test_plots_normal_qq_plots.r#7) - Empty test
    
     54. plot can be drawn for rma.mh(). (@test_plots_normal_qq_plots.r#43) - Empty test
    
     55. plot can be drawn for rma.peto(). (@test_plots_normal_qq_plots.r#56) - Empty test
    
     56. plot can be drawn. (@test_plots_plot_of_cumulative_results.r#7) - Empty test
    
     57. plot can be drawn. (@test_plots_plot_of_influence_diagnostics.r#7) - Empty test
    
     58. plot can be drawn. (@test_plots_radial_plot.r#7) - Empty test
    
     ══ Failed ══════════════════════════════════════════════════════════════════════
     ── 1. Error: residuals are correct for rma.glmm(). (@test_misc_residuals.r#63)
     non-conformable arguments
     1: rma.glmm(measure = "OR", ai = tpos, bi = tneg, ci = cpos, di = cneg, data = dat.bcg,
     subset = 1:6) at testthat/test_misc_residuals.r:63
    
     ── 2. Error: rma.glmm() handles NAs correctly. (@test_misc_rma_handling_nas.r#22
     non-conformable arguments
     1: expect_warning(res <- rma.glmm(measure = "PLO", xi = xi, ni = ni, mods = ~mod1, data = dat)) at testthat/test_misc_rma_handling_nas.r:22
     2: quasi_capture(enquo(object), label, capture_warnings)
     3: .capture(act$val <- eval_bare(get_expr(.quo), get_env(.quo)), ...)
     4: withCallingHandlers(code, warning = function(condition) {
     out$push(condition)
     invokeRestart("muffleWarning")
     })
     5: eval_bare(get_expr(.quo), get_env(.quo))
     6: rma.glmm(measure = "PLO", xi = xi, ni = ni, mods = ~mod1, data = dat)
    
     ── 3. Error: update() works for rma.glmm(). (@test_misc_update.r#42) ──────────
     non-conformable arguments
     1: rma.glmm(measure = "OR", ai = tpos, bi = tneg, ci = cpos, di = cneg, data = dat.bcg,
     method = "FE") at testthat/test_misc_update.r:42
    
     ══ DONE ════════════════════════════════════════════════════════════════════════
     Error: Test failures
     Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc