Last updated on 2019-05-01 01:51:59 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.0.7 | 38.12 | 59.18 | 97.30 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 1.0.7 | 29.83 | 62.46 | 92.29 | OK | |
r-devel-linux-x86_64-fedora-clang | 1.0.7 | 154.67 | OK | |||
r-devel-linux-x86_64-fedora-gcc | 1.0.7 | 153.82 | OK | |||
r-patched-linux-x86_64 | 1.0.7 | 34.64 | 79.18 | 113.82 | OK | |
r-patched-solaris-x86 | 1.0.7 | 189.20 | OK | |||
r-release-linux-x86_64 | 1.0.7 | 37.74 | 59.89 | 97.63 | ERROR | |
r-release-windows-ix86+x86_64 | 1.0.7 | 98.00 | 178.00 | 276.00 | OK | |
r-release-osx-x86_64 | 1.0.7 | OK | ||||
r-oldrel-windows-ix86+x86_64 | 1.0.7 | 80.00 | 147.00 | 227.00 | OK | |
r-oldrel-osx-x86_64 | 1.0.7 | OK |
Version: 1.0.7
Check: examples
Result: ERROR
Running examples in 'rarhsmm-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: em.hmm
> ### Title: EM algorithm to compute maximum likelihood estimate of Gaussian
> ### hidden Markov models with / without autoregressive structures and
> ### with / without regularization on the covariance matrices and/or
> ### autoregressive structures.
> ### Aliases: em.hmm
>
> ### ** Examples
>
> set.seed(332213)
> data(finance)
> x <- data.matrix(finance)
> #log return
> y <- x[-1,-51]
> for(i in 2:nrow(x)){
+ y[i-1,] <- log(x[i,-51]) - log(x[i-1,-51])
+ }
> #annualize the log return
> y <- y * 252
>
> #first, fit a Gaussian HMM without autoregressive structure
> m <- 2
> #initialize the list of means
> mu <- list(apply(y,2,mean), apply(y,2,mean))
> #initialize the list of covariance matrices
> sigma <- list(cov(y)*1.2,cov(y)*0.8)
> #initialize the prior probability
> delta <- c(0.5,0.5)
> #initialize the transition probabilities
> gamma <- matrix(c(0.9,0.1,0.2,0.8),2,2,byrow=TRUE)
> mod1 <- list(m=m,mu=mu,sigma=sigma,delta=delta,gamma=gamma)
> #will not run without a shrinkage on the covariance matrices because the
> #series is not long enough to reliably estimate the covariance structure
> fit1 <- em.hmm(y=y,mod=mod1,cov.shrink=0.0001)
Error in getnodeprob_nocov_mvn(y, mu, sigma, K, p, 0, 0) :
BLAS/LAPACK routine 'DTRTI2' gave error code -1
Calls: em.hmm -> em.mvn -> getnodeprob_nocov_mvn
Execution halted
Flavor: r-devel-linux-x86_64-debian-clang
Version: 1.0.7
Check: examples
Result: ERROR
Running examples in ‘rarhsmm-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: em.hmm
> ### Title: EM algorithm to compute maximum likelihood estimate of Gaussian
> ### hidden Markov models with / without autoregressive structures and
> ### with / without regularization on the covariance matrices and/or
> ### autoregressive structures.
> ### Aliases: em.hmm
>
> ### ** Examples
>
> set.seed(332213)
> data(finance)
> x <- data.matrix(finance)
> #log return
> y <- x[-1,-51]
> for(i in 2:nrow(x)){
+ y[i-1,] <- log(x[i,-51]) - log(x[i-1,-51])
+ }
> #annualize the log return
> y <- y * 252
>
> #first, fit a Gaussian HMM without autoregressive structure
> m <- 2
> #initialize the list of means
> mu <- list(apply(y,2,mean), apply(y,2,mean))
> #initialize the list of covariance matrices
> sigma <- list(cov(y)*1.2,cov(y)*0.8)
> #initialize the prior probability
> delta <- c(0.5,0.5)
> #initialize the transition probabilities
> gamma <- matrix(c(0.9,0.1,0.2,0.8),2,2,byrow=TRUE)
> mod1 <- list(m=m,mu=mu,sigma=sigma,delta=delta,gamma=gamma)
> #will not run without a shrinkage on the covariance matrices because the
> #series is not long enough to reliably estimate the covariance structure
> fit1 <- em.hmm(y=y,mod=mod1,cov.shrink=0.0001)
*** caught segfault ***
address 0x9, cause 'memory not mapped'
Traceback:
1: getnodeprob_nocov_mvn(y, mu, sigma, K, p, 0, 0)
2: em.mvn(y, mod, ntimes, tol, maxit, cov.shrink, print)
3: em.hmm(y = y, mod = mod1, cov.shrink = 1e-04)
An irrecoverable exception occurred. R is aborting now ...
Segmentation fault
Flavor: r-release-linux-x86_64