kml: K-Means for Longitudinal Data

An implementation of k-means specifically design to cluster longitudinal data. It provides facilities to deal with missing value, compute several quality criterion (Calinski and Harabatz, Ray and Turie, Davies and Bouldin, BIC, ...) and propose a graphical interface for choosing the 'best' number of clusters.

Version: 2.4.1
Depends: methods, clv, longitudinalData (≥ 2.4)
Published: 2016-02-16
Author: Christophe Genolini [cre, aut], Bruno Falissard [ctb]
Maintainer: Christophe Genolini <christophe.genolini at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
Citation: kml citation info
In views: Cluster
CRAN checks: kml results


Reference manual: kml.pdf
Package source: kml_2.4.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X binaries: r-release: kml_2.4.1.tgz, r-oldrel: kml_2.4.1.tgz
Old sources: kml archive

Reverse dependencies:

Reverse depends: kml3d, kmlShape
Reverse imports: akmedoids


Please use the canonical form to link to this page.