Transforms your uncalibrated Machine Learning scores to well-calibrated prediction estimates that can be interpreted as probability estimates. The implemented BBQ (Bayes Binning in Quantiles) model is taken from Naeini (2015, ISBN:0-262-51129-0).
Version: | 0.1.1 |
Depends: | R (≥ 2.10.0) |
Imports: | ggplot2, pROC, reshape2, parallel, foreach, stats, fitdistrplus, doParallel |
Published: | 2018-08-27 |
Author: | Johanna Schwarz |
Maintainer: | Dominik Heider <heiderd at mathematik.uni-marburg.de> |
License: | LGPL-3 |
NeedsCompilation: | no |
CRAN checks: | CalibratR results |
Reference manual: | CalibratR.pdf |
Package source: | CalibratR_0.1.1.tar.gz |
Windows binaries: | r-devel: CalibratR_0.1.1.zip, r-release: CalibratR_0.1.1.zip, r-oldrel: CalibratR_0.1.1.zip |
OS X binaries: | r-release: CalibratR_0.1.1.tgz, r-oldrel: CalibratR_0.1.1.tgz |
Old sources: | CalibratR archive |
Please use the canonical form https://CRAN.R-project.org/package=CalibratR to link to this page.