mice: Multivariate Imputation by Chained Equations

Multiple imputation using Fully Conditional Specification (FCS) implemented by the MICE algorithm as described in Van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>. Each variable has its own imputation model. Built-in imputation models are provided for continuous data (predictive mean matching, normal), binary data (logistic regression), unordered categorical data (polytomous logistic regression) and ordered categorical data (proportional odds). MICE can also impute continuous two-level data (normal model, pan, second-level variables). Passive imputation can be used to maintain consistency between variables. Various diagnostic plots are available to inspect the quality of the imputations.

Version: 3.5.0
Depends: methods, R (≥ 2.10.0), lattice
Imports: broom, dplyr, grDevices, graphics, MASS, mitml, nnet, parallel, Rcpp, rlang, rpart, splines, stats, survival, utils
LinkingTo: Rcpp
Suggests: AGD, CALIBERrfimpute, DPpackage, gamlss, lme4, mitools, nlme, pan, randomForest, Zelig, BSDA, knitr, rmarkdown, testthat, HSAUR3, micemd, miceadds, tidyr
Published: 2019-05-13
Author: Stef van Buuren [aut, cre], Karin Groothuis-Oudshoorn [aut], Alexander Robitzsch [ctb], Gerko Vink [ctb], Lisa Doove [ctb], Shahab Jolani [ctb], Rianne Schouten [ctb], Philipp Gaffert [ctb], Florian Meinfelder [ctb], Bernie Gray [ctb]
Maintainer: Stef van Buuren <stef.vanbuuren at tno.nl>
BugReports: https://github.com/stefvanbuuren/mice/issues
License: GPL-2 | GPL-3
URL: http://stefvanbuuren.github.io/mice/ , http://www.stefvanbuuren.name , http://www.stefvanbuuren.name/fimd/
NeedsCompilation: yes
Citation: mice citation info
Materials: NEWS
In views: MissingData, Multivariate, OfficialStatistics, SocialSciences
CRAN checks: mice results

Downloads:

Reference manual: mice.pdf
Package source: mice_3.5.0.tar.gz
Windows binaries: r-devel: mice_3.5.0.zip, r-release: mice_3.5.0.zip, r-oldrel: mice_3.5.0.zip
OS X binaries: r-release: mice_3.5.0.tgz, r-oldrel: mice_3.5.0.tgz
Old sources: mice archive

Reverse dependencies:

Reverse depends: accelmissing, CALIBERrfimpute, genpathmox, HardyWeinberg, hot.deck, ImputeRobust, miceadds, micemd, miceMNAR, Replication, roughrf, smartdata, TestDataImputation, weights, weightTAPSPACK
Reverse imports: BaM, dlookr, dynr, finalfit, hmi, JWileymisc, logistf, missCompare, missMDA, MRPC, PathSelectMP, Qtools, RBtest, RegularizedSCA
Reverse suggests: BaBooN, brms, bucky, cobalt, hdnom, Hmisc, holodeck, HSAUR3, IPWboxplot, konfound, Lambda4, lavaan.survey, LSAmitR, medflex, miceFast, midastouch, MissingDataGUI, mitml, miWQS, rattle, semTools, sjmisc
Reverse enhances: emmeans, mdmb

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mice to link to this page.