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boost tree General Interface for Boosted Trees

Description

boost tree() is a way to generate a specification of a model before fitting and allows the
model to be created using different packages in R or via Spark. The main arguments for
the model are:

� mtry: The number of predictors that will be randomly sampled at each split when
creating the tree models.

� trees: The number of trees contained in the ensemble.

� min n: The minimum number of data points in a node that are required for the node
to be split further.

� tree depth: The maximum depth of the tree (i.e. number of splits).

� learn rate: The rate at which the boosting algorithm adapts from iteration-to-iteration.

� loss reduction: The reduction in the loss function required to split further.

� sample size: The amount of data exposed to the fitting routine.

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using the set engine() function. If left to their de-
faults here (NULL), the values are taken from the underlying model functions. If parameters
need to be modified, update() can be used in lieu of recreating the object from scratch.

Usage

boost_tree(mode = "unknown", mtry = NULL, trees = NULL,
min_n = NULL, tree_depth = NULL, learn_rate = NULL,
loss_reduction = NULL, sample_size = NULL)

## S3 method for class 'boost_tree'
update(object, mtry = NULL, trees = NULL,
min_n = NULL, tree_depth = NULL, learn_rate = NULL,
loss_reduction = NULL, sample_size = NULL, fresh = FALSE, ...)

Arguments

mode A single character string for the type of model. Possible values for this
model are ”unknown”, ”regression”, or ”classification”.

mtry An number for the number (or proportion) of predictors that will be
randomly sampled at each split when creating the tree models (xgboost
only).

trees An integer for the number of trees contained in the ensemble.

min n An integer for the minimum number of data points in a node that are
required for the node to be split further.

tree depth An integer for the maximum deopth of the tree (i.e. number of splits)
(xgboost only).

learn rate A number for the rate at which the boosting algorithm adapts from
iteration-to-iteration (xgboost only).
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loss reduction A number for the reduction in the loss function required to split further
(xgboost only).

sample size An number for the number (or proportion) of data that is exposed to the
fitting routine. For xgboost, the sampling is done at at each iteration
while C5.0 samples once during traning.

object A boosted tree model specification.

fresh A logical for whether the arguments should be modified in-place of or
replaced wholesale.

... Not used for update().

Details

The data given to the function are not saved and are only used to determine the mode of
the model. For boost tree(), the possible modes are ”regression” and ”classification”.

The model can be created using the fit() function using the following engines:

� R: "xgboost", "C5.0"

� Spark: "spark"

Value

An updated model specification.

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are:

xgboost classification

parsnip::xgb_train(x = missing_arg(), y = missing_arg(), nthread = 1,
verbose = 0)

xgboost regression

parsnip::xgb_train(x = missing_arg(), y = missing_arg(), nthread = 1,
verbose = 0)

C5.0 classification

parsnip::C5.0_train(x = missing_arg(), y = missing_arg(), weights = missing_arg())

spark classification

sparklyr::ml_gradient_boosted_trees(x = missing_arg(), formula = missing_arg(),
type = "classification", seed = sample.int(10ˆ5, 1))

spark regression

sparklyr::ml_gradient_boosted_trees(x = missing_arg(), formula = missing_arg(),
type = "regression", seed = sample.int(10ˆ5, 1))
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Note

For models created using the spark engine, there are several differences to consider. First,
only the formula interface to via fit() is available; using fit xy() will generate an error.
Second, the predictions will always be in a spark table format. The names will be the
same as documented but without the dots. Third, there is no equivalent to factor columns
in spark tables so class predictions are returned as character columns. Fourth, to retain
the model object for a new R session (via save()), the model$fit element of the parsnip
object should be serialized via ml save(object$fit) and separately saved to disk. In a new
session, the object can be reloaded and reattached to the parsnip object.

See Also

varying(), fit(), set engine()

Examples

boost_tree(mode = "classification", trees = 20)
# Parameters can be represented by a placeholder:
boost_tree(mode = "regression", mtry = varying())
model <- boost_tree(mtry = 10, min_n = 3)
model
update(model, mtry = 1)
update(model, mtry = 1, fresh = TRUE)

C5.0 train Boosted trees via C5.0

Description

C5.0 train is a wrapper for the C5.0() function in the C50 package that fits tree-based
models where all of the model arguments are in the main function.

Usage

C5.0_train(x, y, weights = NULL, trials = 15, minCases = 2,
sample = 0, ...)

Arguments

x A data frame or matrix of predictors.

y A factor vector with 2 or more levels

weights An optional numeric vector of case weights. Note that the data used for
the case weights will not be used as a splitting variable in the model (see
http://www.rulequest.com/see5-win.html#CASEWEIGHT for Quinlan’s notes
on case weights).

trials An integer specifying the number of boosting iterations. A value of one
indicates that a single model is used.

minCases An integer for the smallest number of samples that must be put in at
least two of the splits.

http://www.rulequest.com/see5-win.html#CASEWEIGHT
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sample A value between (0, .999) that specifies the random proportion of the data
should be used to train the model. By default, all the samples are used
for model training. Samples not used for training are used to evaluate the
accuracy of the model in the printed output.

... Other arguments to pass.

Value

A fitted C5.0 model.

check times Execution Time Data

Description

These data were collected from the CRAN web page for 13,626 R packages. The time to
complete the standard package checking routine was collected In some cases, the package
checking process is stopped due to errors and these data are treated as censored. It is less
than 1 percent.

Details

As predictors, the associated package source code were downloaded and parsed to create
predictors, including

� authors: The number of authors in the author field.

� imports: The number of imported packages.

� suggests: The number of packages suggested.

� depends: The number of hard dependencies.

� Roxygen: a binary indicator for whether Roxygen was used for documentation.

� gh: a binary indicator for whether the URL field contained a GitHub link.

� rforge: a binary indicator for whether the URL field contained a link to R-forge.

� descr: The number of characters (or, in some cases, bytes) in the description field.

� r count: The number of R files in the R directory.

� r size: The total disk size of the R files.

� ns import: Estimated number of imported functions or methods.

� ns export: Estimated number of exported functions or methods.

� s3 methods: Estimated number of S3 methods.

� s4 methods: Estimated number of S4 methods.

� doc count: How many Rmd or Rnw files in the vignettes directory.

� doc size: The disk size of the Rmd or Rnw files.

� src count: The number of files in the src directory.

� src size: The size on disk of files in the src directory.

� data count The number of files in the data directory.

� data size: The size on disk of files in the data directory.
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� testthat count: The number of files in the testthat directory.

� testthat size: The size on disk of files in the testthat directory.

� check time: The time (in seconds) to run R CMD check using the ”r-devel-windows-
ix86+x86 64‘ flavor.

� status: An indicator for whether the tests completed.

Data were collected on 2019-01-20.

Value

check times a data frame

Source

CRAN

Examples

data(check_times)
str(check_times)

decision tree General Interface for Decision Tree Models

Description

decision tree() is a way to generate a specification of a model before fitting and allows
the model to be created using different packages in R or via Spark. The main arguments
for the model are:

� cost complexity: The cost/complexity parameter (a.k.a. Cp) used by CART models
(rpart only).

� tree depth: The maximum depth of a tree (rpart and spark only).

� min n: The minimum number of data points in a node that are required for the node
to be split further.

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set engine(). If left to their defaults here
(NULL), the values are taken from the underlying model functions. If parameters need to be
modified, update() can be used in lieu of recreating the object from scratch.

Usage

decision_tree(mode = "unknown", cost_complexity = NULL,
tree_depth = NULL, min_n = NULL)

## S3 method for class 'decision_tree'
update(object, cost_complexity = NULL,
tree_depth = NULL, min_n = NULL, fresh = FALSE, ...)



8 decision tree

Arguments

mode A single character string for the type of model. Possible values for this
model are ”unknown”, ”regression”, or ”classification”.

cost complexity

A positive number for the the cost/complexity parameter (a.k.a. Cp) used
by CART models (rpart only).

tree depth An integer for maximum depth of the tree.

min n An integer for the minimum number of data points in a node that are
required for the node to be split further.

object A random forest model specification.

fresh A logical for whether the arguments should be modified in-place of or
replaced wholesale.

... Not used for update().

Details

The model can be created using the fit() function using the following engines:

� R: "rpart" or "C5.0" (classification only)

� Spark: "spark"

Note that, for rpart models, but cost complexity and tree depth can be both be specified
but the package will give precedence to cost complexity. Also, tree depth values greater
than 30 rpart will give nonsense results on 32-bit machines.

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are::

rpart classification

rpart::rpart(formula = missing_arg(), data = missing_arg(), weights = missing_arg())

rpart regression

rpart::rpart(formula = missing_arg(), data = missing_arg(), weights = missing_arg())

C5.0 classification

parsnip::C5.0_train(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
trials = 1)

spark classification

sparklyr::ml_decision_tree_classifier(x = missing_arg(), formula = missing_arg(),
seed = sample.int(10ˆ5, 1), type = "classification")

spark regression

sparklyr::ml_decision_tree_classifier(x = missing_arg(), formula = missing_arg(),
seed = sample.int(10ˆ5, 1), type = "regression")
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Note

For models created using the spark engine, there are several differences to consider. First,
only the formula interface to via fit() is available; using fit xy() will generate an error.
Second, the predictions will always be in a spark table format. The names will be the
same as documented but without the dots. Third, there is no equivalent to factor columns
in spark tables so class predictions are returned as character columns. Fourth, to retain
the model object for a new R session (via save()), the model$fit element of the parsnip
object should be serialized via ml save(object$fit) and separately saved to disk. In a new
session, the object can be reloaded and reattached to the parsnip object.

See Also

varying(), fit()

Examples

decision_tree(mode = "classification", tree_depth = 5)
# Parameters can be represented by a placeholder:
decision_tree(mode = "regression", cost_complexity = varying())
model <- decision_tree(cost_complexity = 10, min_n = 3)
model
update(model, cost_complexity = 1)
update(model, cost_complexity = 1, fresh = TRUE)

descriptors Data Set Characteristics Available when Fitting Models

Description

When using the fit() functions there are some variables that will be available for use in
arguments. For example, if the user would like to choose an argument value based on the
current number of rows in a data set, the .obs() function can be used. See Details below.

Usage

.cols()

.preds()

.obs()

.lvls()

.facts()

.x()

.y()

.dat()
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Details

Existing functions:

� .obs(): The current number of rows in the data set.

� .preds(): The number of columns in the data set that are associated with the predic-
tors prior to dummy variable creation.

� .cols(): The number of predictor columns availible after dummy variables are created
(if any).

� .facts(): The number of factor predictors in the dat set.

� .lvls(): If the outcome is a factor, this is a table with the counts for each level (and
NA otherwise).

� .x(): The predictors returned in the format given. Either a data frame or a matrix.

� .y(): The known outcomes returned in the format given. Either a vector, matrix, or
data frame.

� .dat(): A data frame containing all of the predictors and the outcomes. If fit xy()
was used, the outcomes are attached as the column, ..y.

For example, if you use the model formula Sepal.Width ˜ . with the iris data, the values
would be

.preds() = 4 (the 4 columns in `iris`)

.cols() = 5 (3 numeric columns + 2 from Species dummy variables)

.obs() = 150

.lvls() = NA (no factor outcome)

.facts() = 1 (the Species predictor)

.y() = <vector> (Sepal.Width as a vector)

.x() = <data.frame> (The other 4 columns as a data frame)

.dat() = <data.frame> (The full data set)

If the formula Species ˜ . where used:

.preds() = 4 (the 4 numeric columns in `iris`)

.cols() = 4 (same)

.obs() = 150

.lvls() = c(setosa = 50, versicolor = 50, virginica = 50)

.facts() = 0

.y() = <vector> (Species as a vector)

.x() = <data.frame> (The other 4 columns as a data frame)

.dat() = <data.frame> (The full data set)

To use these in a model fit, pass them to a model specification. The evaluation is delayed
until the time when the model is run via fit() (and the variables listed above are available).
For example:

data("lending_club")

rand_forest(mode = "classification", mtry = .cols() - 2)

When no descriptors are found, the computation of the descriptor values is not executed.
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fit.model spec Fit a Model Specification to a Dataset

Description

fit() and fit xy() take a model specification, translate the required code by substituting
arguments, and execute the model fit routine.

Usage

## S3 method for class 'model_spec'
fit(object, formula = NULL, data = NULL,
control = fit_control(), ...)

## S3 method for class 'model_spec'
fit_xy(object, x = NULL, y = NULL,
control = fit_control(), ...)

Arguments

object An object of class model spec that has a chosen engine (via set engine()).

formula An object of class ”formula” (or one that can be coerced to that class):
a symbolic description of the model to be fitted.

data Optional, depending on the interface (see Details below). A data frame
containing all relevant variables (e.g. outcome(s), predictors, case weights,
etc). Note: when needed, a named argument should be used.

control A named list with elements verbosity and catch. See fit control().

... Not currently used; values passed here will be ignored. Other options
required to fit the model should be passed using set engine().

x A matrix or data frame of predictors.

y A vector, matrix or data frame of outcome data.

Details

fit() and fit xy() substitute the current arguments in the model specification into the
computational engine’s code, checks them for validity, then fits the model using the data and
the engine-specific code. Different model functions have different interfaces (e.g. formula
or x/y) and these functions translate between the interface used when fit() or fit xy()
were invoked and the one required by the underlying model.

When possible, these functions attempt to avoid making copies of the data. For example, if
the underlying model uses a formula and fit() is invoked, the original data are references
when the model is fit. However, if the underlying model uses something else, such as x/y,
the formula is evaluated and the data are converted to the required format. In this case, any
calls in the resulting model objects reference the temporary objects used to fit the model.
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Value

A model fit object that contains several elements:

� lvl: If the outcome is a factor, this contains the factor levels at the time of model
fitting.

� spec: The model specification object (object in the call to fit)

� fit: when the model is executed without error, this is the model object. Otherwise,
it is a try-error object with the error message.

� preproc: any objects needed to convert between a formula and non-formula interface
(such as the terms object)

The return value will also have a class related to the fitted model (e.g. " glm") before the
base class of "model fit".

See Also

set engine(), fit control(), model spec, model fit

Examples

# Although `glm()` only has a formula interface, different
# methods for specifying the model can be used

library(dplyr)
data("lending_club")

lr_mod <- logistic_reg()

lr_mod <- logistic_reg()

using_formula <-
lr_mod %>%
set_engine("glm") %>%
fit(Class ˜ funded_amnt + int_rate, data = lending_club)

using_xy <-
lr_mod %>%
set_engine("glm") %>%
fit_xy(x = lending_club[, c("funded_amnt", "int_rate")],

y = lending_club$Class)

using_formula
using_xy

fit control Control the fit function

Description

Options can be passed to the fit() function that control the output and computations

Usage

fit_control(verbosity = 1L, catch = FALSE)
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Arguments

verbosity An integer where a value of zero indicates that no messages or output
should be shown when packages are loaded or when the model is fit. A
value of 1 means that package loading is quiet but model fits can produce
output to the screen (depending on if they contain their own verbose-
type argument). A value of 2 or more indicates that any output should
be seen.

catch A logical where a value of TRUE will evaluate the model inside of try(,silent
= TRUE). If the model fails, an object is still returned (without an error)
that inherits the class ”try-error”.

Value

An S3 object with class ”fit control” that is a named list with the results of the function
call

keras mlp Simple interface to MLP models via keras

Description

Instead of building a keras model sequentially, keras mlp can be used to create a feed-
forward network with a single hidden layer. Regularization is via either weight decay or
dropout.

Usage

keras_mlp(x, y, hidden_units = 5, decay = 0, dropout = 0,
epochs = 20, act = "softmax", seeds = sample.int(10ˆ5, size = 3),
...)

Arguments

x A data frame or matrix of predictors

y A vector (factor or numeric) or matrix (numeric) of outcome data.

hidden units An integer for the number of hidden units.

decay A non-negative real number for the amount of weight decay. Either this
parameter or dropout can specified.

dropout The proportion of parameters to set to zero. Either this parameter or
decay can specified.

epochs An integer for the number of passes through the data.

act A character string for the type of activation function between layers.

seeds A vector of three positive integers to control randomness of the calcula-
tions.

... Currently ignored.

Value

A keras model object.
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lending club Loan Data

Description

Loan Data

Details

These data were downloaded from the Lending Club access site (see below) and are from
the first quarter of 2016. A subset of the rows and variables are included here. The outcome
is in the variable Class and is either ”good” (meaning that the loan was fully paid back or
currently on-time) or ”bad” (charged off, defaulted, of 21-120 days late). A data dictionary
can be found on the source website.

Value

lending club a data frame

Source

Lending Club Statistics https://www.lendingclub.com/info/download-data.action

Examples

data(lending_club)
str(lending_club)

linear reg General Interface for Linear Regression Models

Description

linear reg() is a way to generate a specification of a model before fitting and allows the
model to be created using different packages in R, Stan, keras, or via Spark. The main
arguments for the model are:

� penalty: The total amount of regularization in the model. Note that this must be
zero for some engines.

� mixture: The proportion of L1 regularization in the model. Note that this will be
ignored for some engines.

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set engine(). If left to their defaults here
(NULL), the values are taken from the underlying model functions. If parameters need to be
modified, update() can be used in lieu of recreating the object from scratch.



linear reg 15

Usage

linear_reg(mode = "regression", penalty = NULL, mixture = NULL)

## S3 method for class 'linear_reg'
update(object, penalty = NULL, mixture = NULL,
fresh = FALSE, ...)

Arguments

mode A single character string for the type of model. The only possible value
for this model is ”regression”.

penalty An non-negative number representing the total amount of regularization
(glmnet, keras, and spark only). For keras models, this corresponds to
purely L2 regularization (aka weight decay) while the other models can
be a combination of L1 and L2 (depending on the value of mixture).

mixture A number between zero and one (inclusive) that represents the proportion
of regularization that is used for the L2 penalty (i.e. weight decay, or ridge
regression) versus L1 (the lasso) (glmnet and spark only).

object A linear regression model specification.

fresh A logical for whether the arguments should be modified in-place of or
replaced wholesale.

... Not used for update().

Details

The data given to the function are not saved and are only used to determine the mode of
the model. For linear reg(), the mode will always be ”regression”.

The model can be created using the fit() function using the following engines:

� R: "lm" or "glmnet"

� Stan: "stan"

� Spark: "spark"

� keras: "keras"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are:

lm

stats::lm(formula = missing_arg(), data = missing_arg(), weights = missing_arg())

glmnet

glmnet::glmnet(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
family = "gaussian")

stan
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rstanarm::stan_glm(formula = missing_arg(), data = missing_arg(),
weights = missing_arg(), family = stats::gaussian)

spark

sparklyr::ml_linear_regression(x = missing_arg(), formula = missing_arg(),
weight_col = missing_arg())

keras

parsnip::keras_mlp(x = missing_arg(), y = missing_arg(), hidden_units = 1,
act = "linear")

When using glmnet models, there is the option to pass multiple values (or no values) to
the penalty argument. This can have an effect on the model object results. When using
the predict() method in these cases, the return value depends on the value of penalty.
When using predict(), only a single value of the penalty can be used. When predicting
on multiple penalties, the multi predict() function can be used. It returns a tibble with
a list column called .pred that contains a tibble with all of the penalty results.

For prediction, the stan engine can compute posterior intervals analogous to confidence
and prediction intervals. In these instances, the units are the original outcome and when
std error = TRUE, the standard deviation of the posterior distribution (or posterior predic-
tive distribution as appropriate) is returned.

Note

For models created using the spark engine, there are several differences to consider. First,
only the formula interface to via fit() is available; using fit xy() will generate an error.
Second, the predictions will always be in a spark table format. The names will be the
same as documented but without the dots. Third, there is no equivalent to factor columns
in spark tables so class predictions are returned as character columns. Fourth, to retain
the model object for a new R session (via save()), the model$fit element of the parsnip
object should be serialized via ml save(object$fit) and separately saved to disk. In a new
session, the object can be reloaded and reattached to the parsnip object.

See Also

varying(), fit(), set engine()

Examples

linear_reg()
# Parameters can be represented by a placeholder:
linear_reg(penalty = varying())
model <- linear_reg(penalty = 10, mixture = 0.1)
model
update(model, penalty = 1)
update(model, penalty = 1, fresh = TRUE)
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logistic reg General Interface for Logistic Regression Models

Description

logistic reg() is a way to generate a specification of a model before fitting and allows
the model to be created using different packages in R, Stan, keras, or via Spark. The main
arguments for the model are:

� penalty: The total amount of regularization in the model. Note that this must be
zero for some engines.

� mixture: The proportion of L1 regularization in the model. Note that this will be
ignored for some engines.

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set engine(). If left to their defaults here
(NULL), the values are taken from the underlying model functions. If parameters need to be
modified, update() can be used in lieu of recreating the object from scratch.

Usage

logistic_reg(mode = "classification", penalty = NULL, mixture = NULL)

## S3 method for class 'logistic_reg'
update(object, penalty = NULL, mixture = NULL,
fresh = FALSE, ...)

Arguments

mode A single character string for the type of model. The only possible value
for this model is ”classification”.

penalty An non-negative number representing the total amount of regularization
(glmnet, keras, and spark only). For keras models, this corresponds to
purely L2 regularization (aka weight decay) while the other models can
be a combination of L1 and L2 (depending on the value of mixture).

mixture A number between zero and one (inclusive) that represents the proportion
of regularization that is used for the L2 penalty (i.e. weight decay, or ridge
regression) versus L1 (the lasso) (glmnet and spark only).

object A logistic regression model specification.

fresh A logical for whether the arguments should be modified in-place of or
replaced wholesale.

... Not used for update().

Details

For logistic reg(), the mode will always be ”classification”.

The model can be created using the fit() function using the following engines:

� R: "glm" or "glmnet"

� Stan: "stan"

� Spark: "spark"

� keras: "keras"
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Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are:

glm

stats::glm(formula = missing_arg(), data = missing_arg(), weights = missing_arg(),
family = stats::binomial)

glmnet

glmnet::glmnet(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
family = "binomial")

stan

rstanarm::stan_glm(formula = missing_arg(), data = missing_arg(),
weights = missing_arg(), family = stats::binomial)

spark

sparklyr::ml_logistic_regression(x = missing_arg(), formula = missing_arg(),
weight_col = missing_arg(), family = "binomial")

keras

parsnip::keras_mlp(x = missing_arg(), y = missing_arg(), hidden_units = 1,
act = "linear")

When using glmnet models, there is the option to pass multiple values (or no values) to
the penalty argument. This can have an effect on the model object results. When using
the predict() method in these cases, the return value depends on the value of penalty.
When using predict(), only a single value of the penalty can be used. When predicting
on multiple penalties, the multi predict() function can be used. It returns a tibble with
a list column called .pred that contains a tibble with all of the penalty results.

For prediction, the stan engine can compute posterior intervals analogous to confidence
and prediction intervals. In these instances, the units are the original outcome and when
std error = TRUE, the standard deviation of the posterior distribution (or posterior predic-
tive distribution as appropriate) is returned. For glm, the standard error is in logit units
while the intervals are in probability units.

Note

For models created using the spark engine, there are several differences to consider. First,
only the formula interface to via fit() is available; using fit xy() will generate an error.
Second, the predictions will always be in a spark table format. The names will be the
same as documented but without the dots. Third, there is no equivalent to factor columns
in spark tables so class predictions are returned as character columns. Fourth, to retain
the model object for a new R session (via save()), the model$fit element of the parsnip
object should be serialized via ml save(object$fit) and separately saved to disk. In a new
session, the object can be reloaded and reattached to the parsnip object.
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See Also

varying(), fit()

Examples

logistic_reg()
# Parameters can be represented by a placeholder:
logistic_reg(penalty = varying())
model <- logistic_reg(penalty = 10, mixture = 0.1)
model
update(model, penalty = 1)
update(model, penalty = 1, fresh = TRUE)

mars General Interface for MARS

Description

mars() is a way to generate a specification of a model before fitting and allows the model
to be created using R. The main arguments for the model are:

� num terms: The number of features that will be retained in the final model.

� prod degree: The highest possible degree of interaction between features. A value
of 1 indicates and additive model while a value of 2 allows, but does not guarantee,
two-way interactions between features.

� prune method: The type of pruning. Possible values are listed in ?earth.

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set engine(). If left to their defaults here
(NULL), the values are taken from the underlying model functions. If parameters need to be
modified, update() can be used in lieu of recreating the object from scratch.

Usage

mars(mode = "unknown", num_terms = NULL, prod_degree = NULL,
prune_method = NULL)

## S3 method for class 'mars'
update(object, num_terms = NULL, prod_degree = NULL,
prune_method = NULL, fresh = FALSE, ...)

Arguments

mode A single character string for the type of model. Possible values for this
model are ”unknown”, ”regression”, or ”classification”.

num terms The number of features that will be retained in the final model, including
the intercept.

prod degree The highest possible interaction degree.

prune method The pruning method.

object A MARS model specification.

fresh A logical for whether the arguments should be modified in-place of or
replaced wholesale.

... Not used for update().
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Details

The model can be created using the fit() function using the following engines:

� R: "earth"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are:

earth classification

earth::earth(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
glm = list(family = stats::binomial), keepxy = TRUE)

earth regression

earth::earth(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
keepxy = TRUE)

Note that, when the model is fit, the earth package only has its namespace loaded. However,
if multi predict is used, the package is attached.

See Also

varying(), fit()

Examples

mars(mode = "regression", num_terms = 5)
model <- mars(num_terms = 10, prune_method = "none")
model
update(model, num_terms = 1)
update(model, num_terms = 1, fresh = TRUE)

mlp General Interface for Single Layer Neural Network

Description

mlp(), for multilayer perceptron, is a way to generate a specification of a model before
fitting and allows the model to be created using different packages in R or via keras The
main arguments for the model are:

� hidden units: The number of units in the hidden layer (default: 5).

� penalty: The amount of L2 regularization (aka weight decay, default is zero).

� dropout: The proportion of parameters randomly dropped out of the model (keras
only, default is zero).

� epochs: The number of training iterations (default: 20).

� activation: The type of function that connects the hidden layer and the input vari-
ables (keras only, default is softmax).

If parameters need to be modified, this function can be used in lieu of recreating the object
from scratch.
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Usage

mlp(mode = "unknown", hidden_units = NULL, penalty = NULL,
dropout = NULL, epochs = NULL, activation = NULL)

## S3 method for class 'mlp'
update(object, hidden_units = NULL, penalty = NULL,
dropout = NULL, epochs = NULL, activation = NULL, fresh = FALSE,
...)

Arguments

mode A single character string for the type of model. Possible values for this
model are ”unknown”, ”regression”, or ”classification”.

hidden units An integer for the number of units in the hidden model.

penalty A non-negative numeric value for the amount of weight decay.

dropout A number between 0 (inclusive) and 1 denoting the proportion of model
parameters randomly set to zero during model training.

epochs An integer for the number of training iterations.

activation A single character strong denoting the type of relationship between the
original predictors and the hidden unit layer. The activation function
between the hidden and output layers is automatically set to either ”lin-
ear” or ”softmax” depending on the type of outcome. Possible values are:
”linear”, ”softmax”, ”relu”, and ”elu”

object A random forest model specification.

fresh A logical for whether the arguments should be modified in-place of or
replaced wholesale.

... Not used for update().

Details

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set engine(). If left to their defaults here
(see above), the values are taken from the underlying model functions. One exception is
hidden units when nnet::nnet is used; that function’s size argument has no default so
a value of 5 units will be used. Also, unless otherwise specified, the linout argument to
nnet::nnet() will be set to TRUE when a regression model is created. If parameters need
to be modified, update() can be used in lieu of recreating the object from scratch.

The model can be created using the fit() function using the following engines:

� R: "nnet"

� keras: "keras"

An error is thrown if both penalty and dropout are specified for keras models.

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are:

keras classification
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parsnip::keras_mlp(x = missing_arg(), y = missing_arg())

keras regression

parsnip::keras_mlp(x = missing_arg(), y = missing_arg())

nnet classification

nnet::nnet(formula = missing_arg(), data = missing_arg(), weights = missing_arg(),
size = 5, trace = FALSE, linout = FALSE)

nnet regression

nnet::nnet(formula = missing_arg(), data = missing_arg(), weights = missing_arg(),
size = 5, trace = FALSE, linout = TRUE)

See Also

varying(), fit()

Examples

mlp(mode = "classification", penalty = 0.01)
# Parameters can be represented by a placeholder:
mlp(mode = "regression", hidden_units = varying())
model <- mlp(hidden_units = 10, dropout = 0.30)
model
update(model, hidden_units = 2)
update(model, hidden_units = 2, fresh = TRUE)

model fit Model Fit Object Information

Description

An object with class ”model fit” is a container for information about a model that has been
fit to the data.

Details

The main elements of the object are:

� lvl: A vector of factor levels when the outcome is is a factor. This is NULL when the
outcome is not a factor vector.

� spec: A model spec object.

� fit: The object produced by the fitting function.

� preproc: This contains any data-specific information required to process new a sample
point for prediction. For example, if the underlying model function requires arguments
x and y and the user passed a formula to fit, the preproc object would contain items
such as the terms object and so on. When no information is required, this is NA.
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As discussed in the documentation for model spec, the original arguments to the specifica-
tion are saved as quosures. These are evaluated for the model fit object prior to fitting.
If the resulting model object prints its call, any user-defined options are shown in the call
preceded by a tilde (see the example below). This is a result of the use of quosures in the
specification.

This class and structure is the basis for how parsnip stores model objects after to seeing
the data and applying a model.

Examples

# Keep the `x` matrix if the data are not too big.
spec_obj <-

linear_reg() %>%
set_engine("lm", x = ifelse(.obs() < 500, TRUE, FALSE))

spec_obj

fit_obj <- fit(spec_obj, mpg ˜ ., data = mtcars)
fit_obj

nrow(fit_obj$fit$x)

model spec Model Specification Information

Description

An object with class ”model spec” is a container for information about a model that will
be fit.

Details

The main elements of the object are:

� args: A vector of the main arguments for the model. The names of these arguments
may be different form their counterparts n the underlying model function. For exam-
ple, for a glmnet model, the argument name for the amount of the penalty is called
”penalty” instead of ”lambda” to make it more general and usable across different
types of models (and to not be specific to a particular model function). The elements
of args can varying(). If left to their defaults (NULL), the arguments will use the
underlying model functions default value. As discussed below, the arguments in args
are captured as quosures and are not immediately executed.

� ...: Optional model-function-specific parameters. As with args, these will be quosures
and can be varying().

� mode: The type of model, such as ”regression” or ”classification”. Other modes will
be added once the package adds more functionality.

� method: This is a slot that is filled in later by the model’s constructor function. It
generally contains lists of information that are used to create the fit and prediction
code as well as required packages and similar data.

� engine: This character string declares exactly what software will be used. It can be a
package name or a technology type.

This class and structure is the basis for how parsnip stores model objects prior to seeing
the data.



24 model spec

Argument Details

An important detail to understand when creating model specifications is that they are
intended to be functionally independent of the data. While it is true that some tuning
parameters are data dependent, the model specification does not interact with the data at
all.

For example, most R functions immediately evaluate their arguments. For example, when
calling mean(dat vec), the object dat vec is immediately evaluated inside of the function.

parsnip model functions do not do this. For example, using

rand_forest(mtry = ncol(iris) - 1)

does not execute ncol(iris) -1 when creating the specification. This can be seen in the
output:

> rand_forest(mtry = ncol(iris) - 1)
Random Forest Model Specification (unknown)

Main Arguments:
mtry = ncol(iris) - 1

The model functions save the argument expressions and their associated environments
(a.k.a. a quosure) to be evaluated later when either fit() or fit xy() are called with the
actual data.

The consequence of this strategy is that any data required to get the parameter values must
be available when the model is fit. The two main ways that this can fail is if:

1. The data have been modified between the creation of the model specification and when
the model fit function is invoked.

2. If the model specification is saved and loaded into a new session where those same
data objects do not exist.

The best way to avoid these issues is to not reference any data objects in the global envi-
ronment but to use data descriptors such as .cols(). Another way of writing the previous
specification is

rand_forest(mtry = .cols() - 1)

This is not dependent on any specific data object and is evaluated immediately before the
model fitting process begins.

One less advantageous approach to solving this issue is to use quasiquotation. This would
insert the actual R object into the model specification and might be the best idea when the
data object is small. For example, using

rand_forest(mtry = ncol(!!iris) - 1)

would work (and be reproducible between sessions) but embeds the entire iris data set into
the mtry expression:
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> rand_forest(mtry = ncol(!!iris) - 1)
Random Forest Model Specification (unknown)

Main Arguments:
mtry = ncol(structure(list(Sepal.Length = c(5.1, 4.9, 4.7, 4.6, 5, <snip>

However, if there were an object with the number of columns in it, this wouldn’t be too
bad:

> mtry_val <- ncol(iris) - 1
> mtry_val
[1] 4
> rand_forest(mtry = !!mtry_val)
Random Forest Model Specification (unknown)

Main Arguments:
mtry = 4

More information on quosures and quasiquotation can be found at https://tidyeval.
tidyverse.org.

multinom reg General Interface for Multinomial Regression Models

Description

multinom reg() is a way to generate a specification of a model before fitting and allows the
model to be created using different packages in R, keras, or Spark. The main arguments
for the model are:

� penalty: The total amount of regularization in the model. Note that this must be
zero for some engines.

� mixture: The proportion of L1 regularization in the model. Note that this will be
ignored for some engines.

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set engine(). If left to their defaults here
(NULL), the values are taken from the underlying model functions. If parameters need to be
modified, update() can be used in lieu of recreating the object from scratch.

Usage

multinom_reg(mode = "classification", penalty = NULL, mixture = NULL)

## S3 method for class 'multinom_reg'
update(object, penalty = NULL, mixture = NULL,
fresh = FALSE, ...)

https://tidyeval.tidyverse.org
https://tidyeval.tidyverse.org
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Arguments

mode A single character string for the type of model. The only possible value
for this model is ”classification”.

penalty An non-negative number representing the total amount of regularization
(glmnet, keras, and spark only). For keras models, this corresponds to
purely L2 regularization (aka weight decay) while the other models can
be a combination of L1 and L2 (depending on the value of mixture).

mixture A number between zero and one (inclusive) that represents the proportion
of regularization that is used for the L2 penalty (i.e. weight decay, or ridge
regression) versus L1 (the lasso) (glmnet only).

object A multinomial regression model specification.

fresh A logical for whether the arguments should be modified in-place of or
replaced wholesale.

... Not used for update().

Details

For multinom reg(), the mode will always be ”classification”.

The model can be created using the fit() function using the following engines:

� R: "glmnet"

� Stan: "stan"

� keras: "keras"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are:

glmnet

glmnet::glmnet(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
family = "multinomial")

spark

sparklyr::ml_logistic_regression(x = missing_arg(), formula = missing_arg(),
weight_col = missing_arg(), family = "multinomial")

keras

parsnip::keras_mlp(x = missing_arg(), y = missing_arg(), hidden_units = 1,
act = "linear")

When using glmnet models, there is the option to pass multiple values (or no values) to
the penalty argument. This can have an effect on the model object results. When using
the predict() method in these cases, the return value depends on the value of penalty.
When using predict(), only a single value of the penalty can be used. When predicting
on multiple penalties, the multi predict() function can be used. It returns a tibble with
a list column called .pred that contains a tibble with all of the penalty results.
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Note

For models created using the spark engine, there are several differences to consider. First,
only the formula interface to via fit() is available; using fit xy() will generate an error.
Second, the predictions will always be in a spark table format. The names will be the
same as documented but without the dots. Third, there is no equivalent to factor columns
in spark tables so class predictions are returned as character columns. Fourth, to retain
the model object for a new R session (via save()), the model$fit element of the parsnip
object should be serialized via ml save(object$fit) and separately saved to disk. In a new
session, the object can be reloaded and reattached to the parsnip object.

See Also

varying(), fit()

Examples

multinom_reg()
# Parameters can be represented by a placeholder:
multinom_reg(penalty = varying())
model <- multinom_reg(penalty = 10, mixture = 0.1)
model
update(model, penalty = 1)
update(model, penalty = 1, fresh = TRUE)

multi predict Model predictions across many sub-models

Description

For some models, predictions can be made on sub-models in the model object.

Usage

multi_predict(object, ...)

## Default S3 method:
multi_predict(object, ...)

Arguments

object A model fit object.

... Optional arguments to pass to predict.model fit(type = "raw") such as
type.

Value

A tibble with the same number of rows as the data being predicted. Mostly likely, there is
a list-column named .pred that is a tibble with multiple rows per sub-model.
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nearest neighbor General Interface for K-Nearest Neighbor Models

Description

nearest neighbor() is a way to generate a specification of a model before fitting and allows
the model to be created using different packages in R. The main arguments for the model
are:

� neighbors: The number of neighbors considered at each prediction.

� weight func: The type of kernel function that weights the distances between samples.

� dist power: The parameter used when calculating the Minkowski distance. This cor-
responds to the Manhattan distance with dist power = 1 and the Euclidean distance
with dist power = 2.

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set engine(). If left to their defaults here
(NULL), the values are taken from the underlying model functions. If parameters need to be
modified, update() can be used in lieu of recreating the object from scratch.

Usage

nearest_neighbor(mode = "unknown", neighbors = NULL,
weight_func = NULL, dist_power = NULL)

Arguments

mode A single character string for the type of model. Possible values for this
model are "unknown", "regression", or "classification".

neighbors A single integer for the number of neighbors to consider (often called k).

weight func A single character for the type of kernel function used to weight distances
between samples. Valid choices are: "rectangular", "triangular", "epanechnikov",
"biweight", "triweight", "cos", "inv", "gaussian", "rank", or "optimal".

dist power A single number for the parameter used in calculating Minkowski distance.

Details

The model can be created using the fit() function using the following engines:

� R: "kknn"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are:

kknn (classification or regression)

kknn::train.kknn(formula = missing_arg(), data = missing_arg(),
kmax = missing_arg())
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Note

For kknn, the underlying modeling function used is a restricted version of train.kknn()
and not kknn(). It is set up in this way so that parsnip can utilize the underlying
predict.train.kknn method to predict on new data. This also means that a single value
of that function’s kernel argument (a.k.a weight func here) can be supplied

See Also

varying(), fit()

Examples

nearest_neighbor(neighbors = 11)

nullmodel Fit a simple, non-informative model

Description

Fit a single mean or largest class model. nullmodel() is the underlying computational
function for the null model() specification.

Usage

nullmodel(x, ...)

## Default S3 method:
nullmodel(x = NULL, y, ...)

## S3 method for class 'nullmodel'
print(x, ...)

## S3 method for class 'nullmodel'
predict(object, new_data = NULL, type = NULL, ...)

Arguments

x An optional matrix or data frame of predictors. These values are not used
in the model fit

... Optional arguments (not yet used)

y A numeric vector (for regression) or factor (for classification) of outcomes

object An object of class nullmodel

new data A matrix or data frame of predictors (only used to determine the number
of predictions to return)

type Either ”raw” (for regression), ”class” or ”prob” (for classification)
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Details

nullmodel() emulates other model building functions, but returns the simplest model pos-
sible given a training set: a single mean for numeric outcomes and the most prevalent class
for factor outcomes. When class probabilities are requested, the percentage of the training
set samples with the most prevalent class is returned.

Value

The output of nullmodel() is a list of class nullmodel with elements

call the function call

value the mean of y or the most prevalent class

levels when y is a factor, a vector of levels. NULL otherwise

pct when y is a factor, a data frame with a column for each class (NULL
otherwise). The column for the most prevalent class has the proportion
of the training samples with that class (the other columns are zero).

n the number of elements in y

predict.nullmodel() returns a either a factor or numeric vector depending on the class of
y. All predictions are always the same.

Examples

outcome <- factor(sample(letters[1:2],
size = 100,
prob = c(.1, .9),
replace = TRUE))

useless <- nullmodel(y = outcome)
useless
predict(useless, matrix(NA, nrow = 5))

null model General Interface for null models

Description

null model() is a way to generate a specification of a model before fitting and allows the
model to be created using R. It doens’t have any main arguments.

Usage

null_model(mode = "classification")

Arguments

mode A single character string for the type of model. Possible values for this
model are ”unknown”, ”regression”, or ”classification”.
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Details

The model can be created using the fit() function using the following engines:

� R: "parsnip"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are:

parsnip classification

nullmodel(x = missing_arg(), y = missing_arg())

parsnip regression

nullmodel(x = missing_arg(), y = missing_arg())

See Also

varying(), fit()

Examples

null_model(mode = "regression")

predict.model fit Model predictions

Description

Apply a model to create different types of predictions. predict() can be used for all types
of models and used the ”type” argument for more specificity.

Usage

## S3 method for class 'model_fit'
predict(object, new_data, type = NULL,
opts = list(), ...)

Arguments

object An object of class model fit

new data A rectangular data object, such as a data frame.

type A single character value or NULL. Possible values are ”numeric”, ”class”,
”prob”, ”conf int”, ”pred int”, ”quantile”, or ”raw”. When NULL, predict()
will choose an appropriate value based on the model’s mode.

opts A list of optional arguments to the underlying predict function that will
be used when type = "raw". The list should not include options for the
model object or the new data being predicted.
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... Arguments to the underlying model’s prediction function cannot be passed
here (see opts). There are some parsnip related options that can be
passed, depending on the value of type. Possible arguments are:

� level: for types of ”conf int” and ”pred int” this is the parameter
for the tail area of the intervals (e.g. confidence level for confidence
intervals). Default value is 0.95.

� std error: add the standard error of fit or prediction for types of
”conf int” and ”pred int”. Default value is FALSE.

� quantile: the quantile(s) for quantile regression (not implemented
yet)

� time: the time(s) for hazard probability estimates (not implemented
yet)

Details

If ”type” is not supplied to predict(), then a choice is made (type = "numeric" for regres-
sion models and type = "class" for classification).

predict() is designed to provide a tidy result (see ”Value” section below) in a tibble output
format.

When using type = "conf int" and type = "pred int", the options level and std error
can be used. The latter is a logical for an extra column of standard error values (if available).

Value

With the exception of type = "raw", the results of predict.model fit() will be a tibble
as many rows in the output as there are rows in new data and the column names will be
predictable.

For numeric results with a single outcome, the tibble will have a .pred column and .pred Yname
for multivariate results.

For hard class predictions, the column is named .pred class and, when type = "prob", the
columns are .pred classlevel.

type = "conf int" and type = "pred int" return tibbles with columns .pred lower and
.pred upper with an attribute for the confidence level. In the case where intervals can be
produces for class probabilities (or other non-scalar outputs), the columns will be named
.pred lower classlevel and so on.

Quantile predictions return a tibble with a column .pred, which is a list-column. Each list
element contains a tibble with columns .pred and .quantile (and perhaps other columns).

Using type = "raw" with predict.model fit() will return the unadulterated results of the
prediction function.

In the case of Spark-based models, since table columns cannot contain dots, the same
convention is used except 1) no dots appear in names and 2) vectors are never returned but
type-specific prediction functions.

When the model fit failed and the error was captured, the predict() function will return
the same structure as above but filled with missing values. This does not currently work
for multivariate models.

Examples

library(dplyr)
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lm_model <-
linear_reg() %>%
set_engine("lm") %>%
fit(mpg ˜ ., data = mtcars %>% slice(11:32))

pred_cars <-
mtcars %>%
slice(1:10) %>%
select(-mpg)

predict(lm_model, pred_cars)

predict(
lm_model,
pred_cars,
type = "conf_int",
level = 0.90

)

predict(
lm_model,
pred_cars,
type = "raw",
opts = list(type = "terms")

)

rand forest General Interface for Random Forest Models

Description

rand forest() is a way to generate a specification of a model before fitting and allows the
model to be created using different packages in R or via Spark. The main arguments for
the model are:

� mtry: The number of predictors that will be randomly sampled at each split when
creating the tree models.

� trees: The number of trees contained in the ensemble.

� min n: The minimum number of data points in a node that are required for the node
to be split further.

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set engine(). If left to their defaults here
(NULL), the values are taken from the underlying model functions. If parameters need to be
modified, update() can be used in lieu of recreating the object from scratch.

Usage

rand_forest(mode = "unknown", mtry = NULL, trees = NULL,
min_n = NULL)

## S3 method for class 'rand_forest'
update(object, mtry = NULL, trees = NULL,
min_n = NULL, fresh = FALSE, ...)
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Arguments

mode A single character string for the type of model. Possible values for this
model are ”unknown”, ”regression”, or ”classification”.

mtry An integer for the number of predictors that will be randomly sampled
at each split when creating the tree models.

trees An integer for the number of trees contained in the ensemble.

min n An integer for the minimum number of data points in a node that are
required for the node to be split further.

object A random forest model specification.

fresh A logical for whether the arguments should be modified in-place of or
replaced wholesale.

... Not used for update().

Details

The model can be created using the fit() function using the following engines:

� R: "ranger" or "randomForest"

� Spark: "spark"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are::

ranger classification

ranger::ranger(formula = missing_arg(), data = missing_arg(),
case.weights = missing_arg(), num.threads = 1, verbose = FALSE,
seed = sample.int(10ˆ5, 1), probability = TRUE)

ranger regression

ranger::ranger(formula = missing_arg(), data = missing_arg(),
case.weights = missing_arg(), num.threads = 1, verbose = FALSE,
seed = sample.int(10ˆ5, 1))

randomForests classification

randomForest::randomForest(x = missing_arg(), y = missing_arg())

randomForests regression

randomForest::randomForest(x = missing_arg(), y = missing_arg())

spark classification

sparklyr::ml_random_forest(x = missing_arg(), formula = missing_arg(),
type = "classification", seed = sample.int(10ˆ5, 1))

spark regression
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sparklyr::ml_random_forest(x = missing_arg(), formula = missing_arg(),
type = "regression", seed = sample.int(10ˆ5, 1))

For ranger confidence intervals, the intervals are constructed using the form estimate +/-z
* std error. For classification probabilities, these values can fall outside of [0,1] and will
be coerced to be in this range.

Note

For models created using the spark engine, there are several differences to consider. First,
only the formula interface to via fit() is available; using fit xy() will generate an error.
Second, the predictions will always be in a spark table format. The names will be the
same as documented but without the dots. Third, there is no equivalent to factor columns
in spark tables so class predictions are returned as character columns. Fourth, to retain
the model object for a new R session (via save), the model$fit element of the parsnip
object should be serialized via ml save(object$fit) and separately saved to disk. In a new
session, the object can be reloaded and reattached to the parsnip object.

See Also

varying(), fit()

Examples

rand_forest(mode = "classification", trees = 2000)
# Parameters can be represented by a placeholder:
rand_forest(mode = "regression", mtry = varying())
model <- rand_forest(mtry = 10, min_n = 3)
model
update(model, mtry = 1)
update(model, mtry = 1, fresh = TRUE)

rpart train Decision trees via rpart

Description

rpart train is a wrapper for rpart() tree-based models where all of the model arguments
are in the main function.

Usage

rpart_train(formula, data, weights = NULL, cp = 0.01, minsplit = 20,
maxdepth = 30, ...)

Arguments

formula A model formula.

data A data frame.

weights Optional case weights.
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cp A non-negative number for complexity parameter. Any split that does
not decrease the overall lack of fit by a factor of cp is not attempted. For
instance, with anova splitting, this means that the overall R-squared must
increase by cp at each step. The main role of this parameter is to save
computing time by pruning off splits that are obviously not worthwhile.
Essentially,the user informs the program that any split which does not
improve the fit by cp will likely be pruned off by cross-validation, and
that hence the program need not pursue it.

minsplit An integer for the minimum number of observations that must exist in a
node in order for a split to be attempted.

maxdepth An integer for the maximum depth of any node of the final tree, with
the root node counted as depth 0. Values greater than 30 rpart will give
nonsense results on 32-bit machines. This function will truncate maxdepth
to 30 in those cases.

... Other arguments to pass to either rpart or rpart.control.

Value

A fitted rpart model.

set args Change elements of a model specification

Description

set args() can be used to modify the arguments of a model specification while set mode()
is used to change the model’s mode.

Usage

set_args(object, ...)

set_mode(object, mode)

Arguments

object A model specification.

... One or more named model arguments.

mode A character string for the model type (e.g. ”classification” or ”regres-
sion”)

Details

set args() will replace existing values of the arguments.

Value

An updated model object.
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Examples

rand_forest()

rand_forest() %>%
set_args(mtry = 3, importance = TRUE) %>%
set_mode("regression")

set engine Declare a computational engine and specific arguments

Description

set engine() is used to specify which package or system will be used to fit the model, along
with any arguments specific to that software.

Usage

set_engine(object, engine, ...)

Arguments

object A model specification.

engine A character string for the software that should be used to fit the model.
This is highly dependent on the type of model (e.g. linear regression,
random forest, etc.).

... Any optional arguments associated with the chosen computational engine.
These are captured as quosures and can be varying().

Value

An updated model specification.

Examples

# First, set general arguments using the standardized names
mod <-

logistic_reg(mixture = 1/3) %>%
# now say how you want to fit the model and another other options
set_engine("glmnet", nlambda = 10)

translate(mod, engine = "glmnet")
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surv reg General Interface for Parametric Survival Models

Description

surv reg() is a way to generate a specification of a model before fitting and allows the
model to be created using R. The main argument for the model is:

� dist: The probability distribution of the outcome.

This argument is converted to its specific names at the time that the model is fit. Other
options and argument can be set using set engine(). If left to its default here (NULL), the
value is taken from the underlying model functions.

If parameters need to be modified, this function can be used in lieu of recreating the object
from scratch.

Usage

surv_reg(mode = "regression", dist = NULL)

## S3 method for class 'surv_reg'
update(object, dist = NULL, fresh = FALSE, ...)

Arguments

mode A single character string for the type of model. The only possible value
for this model is ”regression”.

dist A character string for the outcome distribution. ”weibull” is the default.

object A survival regression model specification.

fresh A logical for whether the arguments should be modified in-place of or
replaced wholesale.

... Not used for update().

Details

The data given to the function are not saved and are only used to determine the mode of
the model. For surv reg(),the mode will always be ”regression”.

Since survival models typically involve censoring (and require the use of survival::Surv()
objects), the fit() function will require that the survival model be specified via the formula
interface.

Also, for the flexsurv::flexsurvfit engine, the typical strata function cannot be used.
To achieve the same effect, the extra parameter roles can be used (as described above).

For surv reg(), the mode will always be ”regression”.

The model can be created using the fit() function using the following engines:

� R: "flexsurv", "survreg"



svm poly 39

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are:

flexsurv

flexsurv::flexsurvreg(formula = missing_arg(), data = missing_arg(),
weights = missing_arg())

survreg

survival::survreg(formula = missing_arg(), data = missing_arg(),
weights = missing_arg(), model = TRUE)

Note that model = TRUE is needed to produce quantile predictions when there is a stratifi-
cation variable and can be overridden in other cases.

References

Jackson, C. (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal
of Statistical Software, 70(8), 1 - 33.

See Also

varying(), fit(), survival::Surv()

Examples

surv_reg()
# Parameters can be represented by a placeholder:
surv_reg(dist = varying())

model <- surv_reg(dist = "weibull")
model
update(model, dist = "lnorm")

svm poly General interface for polynomial support vector machines

Description

svm poly() is a way to generate a specification of a model before fitting and allows the
model to be created using different packages in R or via Spark. The main arguments for
the model are:

� cost: The cost of predicting a sample within or on the wrong side of the margin.

� degree: The polynomial degree.

� scale factor: A scaling factor for the kernel.

� margin: The epsilon in the SVM insensitive loss function (regression only)

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set engine(). If left to their defaults here
(NULL), the values are taken from the underlying model functions. If parameters need to be
modified, update() can be used in lieu of recreating the object from scratch.
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Usage

svm_poly(mode = "unknown", cost = NULL, degree = NULL,
scale_factor = NULL, margin = NULL)

## S3 method for class 'svm_poly'
update(object, cost = NULL, degree = NULL,
scale_factor = NULL, margin = NULL, fresh = FALSE, ...)

Arguments

mode A single character string for the type of model. Possible values for this
model are ”unknown”, ”regression”, or ”classification”.

cost A positive number for the cost of predicting a sample within or on the
wrong side of the margin

degree A positive number for polynomial degree.

scale factor A positive number for the polynomial scaling factor.

margin A positive number for the epsilon in the SVM insensitive loss function
(regression only)

object A polynomial SVM model specification.

fresh A logical for whether the arguments should be modified in-place of or
replaced wholesale.

... Not used for update().

Details

The model can be created using the fit() function using the following engines:

� R: "kernlab"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are::

kernlab classification

kernlab::ksvm(x = missing_arg(), y = missing_arg(), kernel = "polydot",
prob.model = TRUE)

kernlab regression

kernlab::ksvm(x = missing_arg(), y = missing_arg(), kernel = "polydot")

See Also

varying(), fit()
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Examples

svm_poly(mode = "classification", degree = 1.2)
# Parameters can be represented by a placeholder:
svm_poly(mode = "regression", cost = varying())
model <- svm_poly(cost = 10, scale_factor = 0.1)
model
update(model, cost = 1)
update(model, cost = 1, fresh = TRUE)

svm rbf General interface for radial basis function support vector ma-
chines

Description

svm rbf() is a way to generate a specification of a model before fitting and allows the model
to be created using different packages in R or via Spark. The main arguments for the model
are:

� cost: The cost of predicting a sample within or on the wrong side of the margin.

� rbf sigma: The precision parameter for the radial basis function.

� margin: The epsilon in the SVM insensitive loss function (regression only)

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set engine(). If left to their defaults here
(NULL), the values are taken from the underlying model functions. If parameters need to be
modified, update() can be used in lieu of recreating the object from scratch.

Usage

svm_rbf(mode = "unknown", cost = NULL, rbf_sigma = NULL,
margin = NULL)

## S3 method for class 'svm_rbf'
update(object, cost = NULL, rbf_sigma = NULL,
margin = NULL, fresh = FALSE, ...)

Arguments

mode A single character string for the type of model. Possible values for this
model are ”unknown”, ”regression”, or ”classification”.

cost A positive number for the cost of predicting a sample within or on the
wrong side of the margin

rbf sigma A positive number for radial basis function.

margin A positive number for the epsilon in the SVM insensitive loss function
(regression only)

object A radial basis function SVM model specification.

fresh A logical for whether the arguments should be modified in-place of or
replaced wholesale.

... Not used for update().
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Details

The model can be created using the fit() function using the following engines:

� R: "kernlab"

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this
type of model, the template of the fit calls are::

kernlab classification

kernlab::ksvm(x = missing_arg(), y = missing_arg(), kernel = "rbfdot",
prob.model = TRUE)

kernlab regression

kernlab::ksvm(x = missing_arg(), y = missing_arg(), kernel = "rbfdot")

See Also

varying(), fit()

Examples

svm_rbf(mode = "classification", rbf_sigma = 0.2)
# Parameters can be represented by a placeholder:
svm_rbf(mode = "regression", cost = varying())
model <- svm_rbf(cost = 10, rbf_sigma = 0.1)
model
update(model, cost = 1)
update(model, cost = 1, fresh = TRUE)

tidy.model fit Turn a parsnip model object into a tidy tibble

Description

This method tidies the model in a parsnip model object, if it exists.

Usage

tidy.model_fit(x, ...)

Arguments

x An object to be converted into a tidy tibble::tibble().

... Additional arguments to tidying method.

Value

a tibble
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translate Resolve a Model Specification for a Computational Engine

Description

translate() will translate a model specification into a code object that is specific to a
particular engine (e.g. R package). It translates generic parameters to their counterparts.

Usage

translate(x, ...)

Arguments

x A model specification.

... Not currently used.

Details

translate() produces a template call that lacks the specific argument values (such as data,
etc). These are filled in once fit() is called with the specifics of the data for the model.
The call may also include varying arguments if these are in the specification.

It does contain the resolved argument names that are specific to the model fitting func-
tion/engine.

This function can be useful when you need to understand how parsnip goes from a generic
model specific to a model fitting function.

Note: this function is used internally and users should only use it to understand what the
underlying syntax would be. It should not be used to modify the model specification.

Examples

lm_spec <- linear_reg(penalty = 0.01)

# `penalty` is tranlsated to `lambda`
translate(lm_spec, engine = "glmnet")

# `penalty` not applicable for this model.
translate(lm_spec, engine = "lm")

# `penalty` is tranlsated to `reg_param`
translate(lm_spec, engine = "spark")

# with a placeholder for an unknown argument value:
translate(linear_reg(mixture = varying()), engine = "glmnet")
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varying A placeholder function for argument values

Description

varying() is used when a parameter will be specified at a later date.

Usage

varying()

varying args.model spec

Determine varying arguments

Description

varying args() takes a model specification or a recipe and returns a tibble of information
on all possible varying arguments and whether or not they are actually varying.

Usage

## S3 method for class 'model_spec'
varying_args(object, full = TRUE, ...)

## S3 method for class 'recipe'
varying_args(object, full = TRUE, ...)

## S3 method for class 'step'
varying_args(object, full = TRUE, ...)

Arguments

object A model spec or a recipe.

full A single logical. Should all possible varying parameters be returned? If
FALSE, then only the parameters that are actually varying are returned.

... Not currently used.

Details

The id column is determined differently depending on whether a model spec or a recipe
is used. For a model spec, the first class is used. For a recipe, the unique step id is used.

Value

A tibble with columns for the parameter name (name), whether it contains any varying
value (varying), the id for the object (id), and the class that was used to call the method
(type).
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Examples

# List all possible varying args for the random forest spec
rand_forest() %>% varying_args()

# mtry is now recognized as varying
rand_forest(mtry = varying()) %>% varying_args()

# Even engine specific arguments can vary
rand_forest() %>%

set_engine("ranger", sample.fraction = varying()) %>%
varying_args()

# List only the arguments that actually vary
rand_forest() %>%

set_engine("ranger", sample.fraction = varying()) %>%
varying_args(full = FALSE)

rand_forest() %>%
set_engine(
"randomForest",
strata = Class,
sampsize = varying()

) %>%
varying_args()

wa churn Watson Churn Data

Description

Watson Churn Data

Details

These data were downloaded from the IBM Watson site (see below) in September 2018.
The data contain a factor for whether a customer churned or not. Alternatively, the tenure
column presumably contains information on how long the customer has had an account.
A survival analysis can be done on this column using the churn outcome as the censoring
information. A data dictionary can be found on the source website.

Value

wa churn a data frame

Source

IBM Watson Analytics https://ibm.co/2sOvyvy

Examples

data(wa_churn)
str(wa_churn)
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xgb train Boosted trees via xgboost

Description

xgb train is a wrapper for xgboost tree-based models where all of the model arguments
are in the main function.

Usage

xgb_train(x, y, max_depth = 6, nrounds = 15, eta = 0.3,
colsample_bytree = 1, min_child_weight = 1, gamma = 0,
subsample = 1, ...)

Arguments

x A data frame or matrix of predictors

y A vector (factor or numeric) or matrix (numeric) of outcome data.

max depth An integer for the maximum depth of the tree.

nrounds An integer for the number of boosting iterations.

eta A numeric value between zero and one to control the learning rate.

colsample bytree

Subsampling proportion of columns.

min child weight

A numeric value for the minimum sum of instance weights needed in a
child to continue to split.

gamma An number for the minimum loss reduction required to make a further
partition on a leaf node of the tree

subsample Subsampling proportion of rows.

... Other options to pass to xgb.train.

Value

A fitted xgboost object.
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