Last updated on 2019-07-03 01:47:31 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 0.21.0 | 25.24 | 603.07 | 628.31 | OK | |
r-devel-linux-x86_64-debian-gcc | 0.21.0 | 21.29 | 472.83 | 494.12 | OK | |
r-devel-linux-x86_64-fedora-clang | 0.21.0 | 589.60 | OK | |||
r-devel-linux-x86_64-fedora-gcc | 0.21.0 | 578.88 | OK | |||
r-devel-windows-ix86+x86_64 | 0.21.0 | 52.00 | 669.00 | 721.00 | OK | |
r-patched-linux-x86_64 | 0.21.0 | 24.67 | 599.68 | 624.35 | OK | |
r-patched-solaris-x86 | 0.21.0 | 254.60 | ERROR | --no-vignettes | ||
r-release-linux-x86_64 | 0.21.0 | 25.00 | 603.23 | 628.23 | OK | |
r-release-windows-ix86+x86_64 | 0.21.0 | 46.00 | 641.00 | 687.00 | OK | |
r-release-osx-x86_64 | 0.21.0 | ERROR | ||||
r-oldrel-windows-ix86+x86_64 | 0.21.0 | 42.00 | 638.00 | 680.00 | OK | |
r-oldrel-osx-x86_64 | 0.21.0 | NOTE |
Version: 0.21.0
Flags: --no-vignettes
Check: examples
Result: ERROR
Running examples in ‘NMF-Ex.R’ failed
The error most likely occurred in:
> ### Name: NMFfitX-class
> ### Title: Virtual Class to Handle Results from Multiple Runs of NMF
> ### Algorithms
> ### Aliases: NMFfitX-class
>
> ### ** Examples
>
> ## Don't show:
> # roxygen generated flag
> options(R_CHECK_RUNNING_EXAMPLES_=TRUE)
> ## End(Don't show)
>
> # generate a synthetic dataset with known classes
> n <- 20; counts <- c(5, 2, 3);
> V <- syntheticNMF(n, counts)
>
> # perform multiple runs of one algorithm (default is to keep only best fit)
> res <- nmf(V, 3, nrun=3)
# NOTE - CRAN check detected: limiting maximum number of cores [2/16]
Error in big.matrix(nrow = nrow(x), ncol = ncol(x), type = type, init = NULL, :
Error: memory could not be allocated for instance of type big.matrix
Calls: nmf ... gVariable -> <Anonymous> -> <Anonymous> -> big.matrix
Timing stopped at: 0.033 0.039 0.172
Execution halted
Flavor: r-patched-solaris-x86
Version: 0.21.0
Check: package dependencies
Result: NOTE
Packages suggested but not available for checking: 'doMPI', 'Biobase'
Flavor: r-release-osx-x86_64
Version: 0.21.0
Check: R code for possible problems
Result: NOTE
.foreach_regfun: no visible global function definition for
‘getS3method’
.wrapResult: no visible global function definition for ‘exprs’
hash_function: no visible global function definition for
‘capture.output’
nmfInfo: no visible global function definition for ‘packageDescription’
nmfReport : nmfRun: no visible global function definition for ‘str’
print.foreach_backend: no visible global function definition for ‘str’
setupLibPaths: no visible global function definition for
‘capture.output’
setupTempDirectory: no visible global function definition for
‘file_test’
staticVar: no visible global function definition for ‘capture.output’
str_args: no visible global function definition for ‘capture.output’
txtProgressBar : up1: no visible global function definition for
‘flush.console’
txtProgressBar : up2: no visible global function definition for
‘flush.console’
txtProgressBar : up3: no visible global function definition for
‘flush.console’
txtProgressBar : kill: no visible global function definition for
‘flush.console’
nmf,matrix-numeric-NMFStrategy: no visible global function definition
for ‘capture.output’
nmf,matrix-numeric-NMFStrategy : run.all: no visible global function
definition for ‘setTxtProgressBar’
nmf,matrix-numeric-NMFStrategy : run.all: no visible global function
definition for ‘file_test’
nmfModel,formula-ANY : merge_pdata: no visible global function
definition for ‘pData’
nmfModel,formula-ANY: no visible global function definition for ‘exprs’
seed,ANY-list-NMFSeed: no visible global function definition for
‘capture.output’
show,NMFfit: no visible global function definition for ‘capture.output’
Undefined global functions or variables:
capture.output exprs file_test flush.console getS3method pData
packageDescription setTxtProgressBar str
Consider adding
importFrom("utils", "capture.output", "file_test", "flush.console",
"getS3method", "packageDescription", "setTxtProgressBar",
"str")
to your NAMESPACE file.
Flavor: r-release-osx-x86_64
Version: 0.21.0
Check: Rd cross-references
Result: NOTE
Package unavailable to check Rd xrefs: ‘Biobase’
Flavor: r-release-osx-x86_64
Version: 0.21.0
Check: data for non-ASCII characters
Result: WARN
Error loading dataset 'esGolub':
Error in .requirePackage(package) :
unable to find required package 'Biobase'
The dataset(s) may use package(s) not declared in the DESCRIPTION file.
Flavor: r-release-osx-x86_64
Version: 0.21.0
Check: examples
Result: ERROR
Running examples in ‘NMF-Ex.R’ failed
The error most likely occurred in:
> ### Name: nmfModel
> ### Title: Factory Methods NMF Models
> ### Aliases: nmfModel nmfModel,data.frame,data.frame-method
> ### nmfModel,formula,ANY-method nmfModel,matrix,ANY-method
> ### nmfModel,matrix,matrix-method nmfModel-methods
> ### nmfModel,missing,ANY-method nmfModel,missing,missing-method
> ### nmfModel,NULL,ANY-method nmfModel,numeric,matrix-method
> ### nmfModel,numeric,missing-method nmfModel,numeric,numeric-method
> ### nmfModels
> ### Keywords: methods
>
> ### ** Examples
>
> ## Don't show:
> # roxygen generated flag
> options(R_CHECK_RUNNING_EXAMPLES_=TRUE)
> ## End(Don't show)
>
> #----------
> # nmfModel,numeric,numeric-method
> #----------
> # data
> n <- 20; r <- 3; p <- 10
> V <- rmatrix(n, p) # some target matrix
>
> # create a r-ranked NMF model with a given target dimensions n x p as a 2-length vector
> nmfModel(r, c(n,p)) # directly
<Object of class:NMFstd>
features: 20
basis/rank: 3
samples: 10
> nmfModel(r, dim(V)) # or from an existing matrix <=> nmfModel(r, V)
<Object of class:NMFstd>
features: 20
basis/rank: 3
samples: 10
> # or alternatively passing each dimension separately
> nmfModel(r, n, p)
<Object of class:NMFstd>
features: 20
basis/rank: 3
samples: 10
>
> # trying to create a NMF object based on incompatible matrices generates an error
> w <- rmatrix(n, r)
> h <- rmatrix(r+1, p)
> try( new('NMFstd', W=w, H=h) )
Error in validObject(.Object) :
invalid class “NMFstd” object: Dimensions of W and H are not compatible [ncol(W)= 3 != nrow(H)= 4 ]
> try( nmfModel(w, h) )
Error in .local(rank, target, ...) :
nmfModel - Invalid number of columns in the basis matrix [3]: it should match the number of rows in the mixture coefficient matrix [4]
> try( nmfModel(r+1, W=w, H=h) )
Error in .local(rank, target, ...) :
nmfModel - Objective rank [4] is greater than the number of columns in W [3]
> # The factory method can be force the model to match some target dimensions
> # but warnings are thrown
> nmfModel(r, W=w, H=h)
Warning in .local(rank, target, ...) :
nmfModel - Objective rank [3] is lower than the number of rows in H [4]: only the first 3 rows of H will be used
<Object of class:NMFstd>
features: 20
basis/rank: 3
samples: 10
> nmfModel(r, n-1, W=w, H=h)
Warning in .local(rank, target, ...) :
nmfModel - Number of rows in target is lower than the number of rows in W [20]: only the first 19 rows of W will be used
Warning in .local(rank, target, ...) :
nmfModel - Objective rank [3] is lower than the number of rows in H [4]: only the first 3 rows of H will be used
<Object of class:NMFstd>
features: 19
basis/rank: 3
samples: 10
>
> #----------
> # nmfModel,numeric,missing-method
> #----------
> ## Empty model of given rank
> nmfModel(3)
<Object of class:NMFstd>
features: 0
basis/rank: 3
samples: 0
>
> #----------
> # nmfModel,missing,ANY-method
> #----------
> nmfModel(target=10) #square
<Object of class:NMFstd>
features: 10
basis/rank: 0
samples: 10
> nmfModel(target=c(10, 5))
<Object of class:NMFstd>
features: 10
basis/rank: 0
samples: 5
>
> #----------
> # nmfModel,missing,missing-method
> #----------
> # Build an empty NMF model
> nmfModel()
<Object of class:NMFstd>
features: 0
basis/rank: 0
samples: 0
>
> # create a NMF object based on one random matrix: the missing matrix is deduced
> # Note this only works when using factory method NMF
> n <- 50; r <- 3;
> w <- rmatrix(n, r)
> nmfModel(W=w)
<Object of class:NMFstd>
features: 50
basis/rank: 3
samples: 0
>
> # create a NMF object based on random (compatible) matrices
> p <- 20
> h <- rmatrix(r, p)
> nmfModel(H=h)
<Object of class:NMFstd>
features: 0
basis/rank: 3
samples: 20
>
> # specifies two compatible matrices
> nmfModel(W=w, H=h)
<Object of class:NMFstd>
features: 50
basis/rank: 3
samples: 20
> # error if not compatible
> try( nmfModel(W=w, H=h[-1,]) )
Error in .local(rank, target, ...) :
nmfModel - Invalid number of columns in the basis matrix [3]: it should match the number of rows in the mixture coefficient matrix [2]
>
> #----------
> # nmfModel,numeric,matrix-method
> #----------
> # create a r-ranked NMF model compatible with a given target matrix
> obj <- nmfModel(r, V)
> all(is.na(basis(obj)))
[1] TRUE
>
> #----------
> # nmfModel,matrix,matrix-method
> #----------
> ## From two existing factors
>
> # allows a convenient call without argument names
> w <- rmatrix(n, 3); h <- rmatrix(3, p)
> nmfModel(w, h)
<Object of class:NMFstd>
features: 50
basis/rank: 3
samples: 20
>
> # Specify the type of NMF model (e.g. 'NMFns' for non-smooth NMF)
> mod <- nmfModel(w, h, model='NMFns')
> mod
<Object of class:NMFns>
features: 50
basis/rank: 3
samples: 20
theta: 0.5
>
> # One can use such an NMF model as a seed when fitting a target matrix with nmf()
> V <- rmatrix(mod)
> res <- nmf(V, mod)
> nmf.equal(res, nmf(V, mod))
[1] TRUE
>
> # NB: when called only with such a seed, the rank and the NMF algorithm
> # are selected based on the input NMF model.
> # e.g. here rank was 3 and the algorithm "nsNMF" is used, because it is the default
> # algorithm to fit "NMFns" models (See ?nmf).
>
> #----------
> # nmfModel,matrix,ANY-method
> #----------
> ## swapped arguments `rank` and `target`
> V <- rmatrix(20, 10)
> nmfModel(V) # equivalent to nmfModel(target=V)
<Object of class:NMFstd>
features: 20
basis/rank: 0
samples: 10
> nmfModel(V, 3) # equivalent to nmfModel(3, V)
<Object of class:NMFstd>
features: 20
basis/rank: 3
samples: 10
>
> #----------
> # nmfModel,formula,ANY-method
> #----------
> # empty 3-rank model
> nmfModel(~ 3)
<Object of class:NMFstd>
features: 0
basis/rank: 3
samples: 0
>
> # 3-rank model that fits a given data matrix
> x <- rmatrix(20,10)
> nmfModel(x ~ 3)
<Object of class:NMFstd>
features: 20
basis/rank: 3
samples: 10
>
> # add fixed coefficient term defined by a factor
> gr <- gl(2, 5)
> nmfModel(x ~ 3 + gr)
<Object of class:NMFstd>
features: 20
basis/rank: 5
samples: 10
fixed coef [2]:
gr = <1, 2>
>
> # add fixed coefficient term defined by a numeric covariate
> nmfModel(x ~ 3 + gr + b, data=list(b=runif(10)))
<Object of class:NMFstd>
features: 20
basis/rank: 6
samples: 10
fixed coef [3]:
gr = <1, 2>
b = 0.0101301828399301, 0.21454192395322, ..., 0.767450851621106
>
> # 3-rank model that fits a given ExpressionSet (with fixed coef terms)
> e <- ExpressionSet(x)
Error in ExpressionSet(x) : could not find function "ExpressionSet"
Execution halted
Flavor: r-release-osx-x86_64
Version: 0.21.0
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building ‘NMF-vignette.Rnw’ using knitr
Quitting from lines 385-398 (NMF-vignette.Rnw)
Error: processing vignette 'NMF-vignette.Rnw' failed with diagnostics:
unable to find required package 'Biobase'
--- failed re-building ‘NMF-vignette.Rnw’
--- re-building ‘heatmaps.Rnw’ using knitr
Converted 2 of 2 package citations to BibTeX
Writing 4 Bibtex entries ... OK
Results written to file 'Rpackages.bib'
--- finished re-building ‘heatmaps.Rnw’
SUMMARY: processing the following file failed:
‘NMF-vignette.Rnw’
Error: Vignette re-building failed.
Execution halted
Flavor: r-release-osx-x86_64
Version: 0.21.0
Check: package dependencies
Result: NOTE
Package suggested but not available for checking: ‘doMPI’
Flavor: r-oldrel-osx-x86_64