ddalpha: Depth-Based Classification and Calculation of Data Depth

Contains procedures for depth-based supervised learning, which are entirely non-parametric, in particular the DDalpha-procedure (Lange, Mosler and Mozharovskyi, 2014 <doi:10.1007/s00362-012-0488-4>). The training data sample is transformed by a statistical depth function to a compact low-dimensional space, where the final classification is done. It also offers an extension to functional data and routines for calculating certain notions of statistical depth functions. 50 multivariate and 5 functional classification problems are included.

Version: 1.3.9
Depends: R (≥ 2.10), stats, utils, graphics, grDevices, MASS, class, robustbase, sfsmisc, geometry
Imports: Rcpp (≥ 0.11.0)
LinkingTo: BH, Rcpp
Published: 2019-04-07
Author: Oleksii Pokotylo [aut, cre], Pavlo Mozharovskyi [aut], Rainer Dyckerhoff [aut], Stanislav Nagy [aut]
Maintainer: Oleksii Pokotylo <alexey.pokotylo at gmail.com>
License: GPL-2
NeedsCompilation: yes
SystemRequirements: C++11
Citation: ddalpha citation info
In views: FunctionalData
CRAN checks: ddalpha results


Reference manual: ddalpha.pdf
Package source: ddalpha_1.3.9.tar.gz
Windows binaries: r-devel: ddalpha_1.3.9.zip, r-release: ddalpha_1.3.9.zip, r-oldrel: ddalpha_1.3.9.zip
OS X binaries: r-release: ddalpha_1.3.9.tgz, r-oldrel: ddalpha_1.3.9.tgz
Old sources: ddalpha archive

Reverse dependencies:

Reverse depends: curveDepth, TukeyRegion
Reverse imports: pdSpecEst
Reverse suggests: recipes


Please use the canonical form https://CRAN.R-project.org/package=ddalpha to link to this page.