In the generalized Roy model, the marginal treatment effect (MTE) can be used as a building block for constructing conventional causal parameters such as the average treatment effect (ATE) and the average treatment effect on the treated (ATT) (Heckman, Urzua, and Vytlacil 2006 <doi:10.1162/rest.88.3.389>). Given a treatment selection model and an outcome model, the function mte() estimates the MTE via a semiparametric local instrumental variables method (or via a normal selection model). The function eval_mte() evaluates MTE at any combination of covariates x and latent resistance u, and the function eval_mte_tilde() evaluates MTE projected onto the estimated propensity score (Zhou and Xie 2019 <https://www.journals.uchicago.edu/doi/abs/10.1086/702172>). The object returned by mte() can be used to estimate conventional parameters such as ATE and ATT (via average()) or marginal policy-relevant treatment effects (via mprte()).
Version: | 0.2.1 |
Depends: | R (≥ 3.3.0) |
Imports: | KernSmooth (≥ 2.5.0), mgcv (≥ 1.8-19), sampleSelection (≥ 1.2-0), stats |
Suggests: | plotly |
Published: | 2019-05-06 |
Author: | Xiang Zhou [aut, cre] |
Maintainer: | Xiang Zhou <xiang_zhou at fas.harvard.edu> |
BugReports: | https://github.com/xiangzhou09/localIV |
License: | GPL (≥ 3) |
URL: | https://github.com/xiangzhou09/localIV |
NeedsCompilation: | no |
CRAN checks: | localIV results |
Reference manual: | localIV.pdf |
Package source: | localIV_0.2.1.tar.gz |
Windows binaries: | r-devel: localIV_0.2.1.zip, r-release: localIV_0.2.1.zip, r-oldrel: localIV_0.2.1.zip |
OS X binaries: | r-release: localIV_0.2.1.tgz, r-oldrel: localIV_0.2.1.tgz |
Old sources: | localIV archive |
Please use the canonical form https://CRAN.R-project.org/package=localIV to link to this page.