Main usage: Estimation for logistic regression with missingness
The main function in our package is miss.saem
function, which returns the estimation of parameters for logistic regression with missingness. Here we apply this function with its default options.
## iteration = 10 beta = 0.07193013 0.8621059 -0.9593602 1.188501 -0.00691982 -1.115174
## Distance from last iteration = 0.002800532
## iteration = 20 beta = -0.03136551 1.256794 -1.12295 1.180936 -0.009885152 -1.114326
## Distance from last iteration = 0.0176632
## iteration = 30 beta = 0.02075442 1.16449 -1.021039 1.162069 -0.01682317 -1.099308
## Distance from last iteration = 0.1218524
## iteration = 40 beta = 0.1477152 1.073935 -1.095803 1.173065 -0.02928672 -1.099446
## Distance from last iteration = 0.1414668
## iteration = 50 beta = 0.1205986 1.113298 -0.9688564 1.041548 -0.06052164 -0.9799622
## Distance from last iteration = 0.1737565
## iteration = 60 beta = 0.1129732 1.013455 -0.9389359 1.027017 -0.05479268 -0.9524152
## Distance from last iteration = 3.076897e-05
## iteration = 70 beta = 0.07847484 1.023609 -0.9626167 1.038256 -0.04132143 -0.9646895
## Distance from last iteration = 0.0002820075
## iteration = 80 beta = 0.07095625 1.070815 -0.9922385 1.053396 -0.04173298 -0.980045
## Distance from last iteration = 5.67119e-05
## iteration = 90 beta = 0.07070879 1.089326 -1.010678 1.072014 -0.03172497 -1.007943
## Distance from last iteration = 7.494584e-05
## iteration = 100 beta = 0.06932229 1.107081 -1.022656 1.081968 -0.03006122 -1.017227
## Distance from last iteration = 1.828823e-05
## iteration = 110 beta = 0.06329327 1.116114 -1.028553 1.089239 -0.0295718 -1.025201
## Distance from last iteration = 1.094912e-06
## iteration = 120 beta = 0.06704591 1.124846 -1.035163 1.090537 -0.02853558 -1.026653
## Distance from last iteration = 1.048773e-05
## iteration = 130 beta = 0.06694411 1.125318 -1.033447 1.086222 -0.02904691 -1.024076
## Distance from last iteration = 1.398283e-05
## iteration = 140 beta = 0.06392523 1.117632 -1.02875 1.085534 -0.02812343 -1.024316
## Distance from last iteration = 2.058142e-05
## iteration = 150 beta = 0.05796131 1.11061 -1.026311 1.085827 -0.02504412 -1.025536
## Distance from last iteration = 1.077455e-05
## iteration = 160 beta = 0.06594651 1.109383 -1.027915 1.085974 -0.0271385 -1.024832
## Distance from last iteration = 2.593489e-06
## iteration = 170 beta = 0.07014832 1.114645 -1.031966 1.086403 -0.02695946 -1.025621
## Distance from last iteration = 5.779123e-06
## iteration = 180 beta = 0.0696883 1.118459 -1.033234 1.085297 -0.02696528 -1.02516
## Distance from last iteration = 4.383226e-06
## iteration = 190 beta = 0.06977064 1.120923 -1.035369 1.086957 -0.02654733 -1.02698
## Distance from last iteration = 2.213467e-06
## iteration = 200 beta = 0.07263775 1.126912 -1.039287 1.087265 -0.02704987 -1.027656
## Distance from last iteration = 7.281153e-07
## [1] 0.07295149 1.12523513 -1.03819294 1.08639345 -0.02713150 -1.02667062
And if you need to obtain the variance of estimation:
## iteration = 10 beta = 0.07193013 0.8621059 -0.9593602 1.188501 -0.00691982 -1.115174
## Distance from last iteration = 0.002800532
## iteration = 20 beta = -0.03136551 1.256794 -1.12295 1.180936 -0.009885152 -1.114326
## Distance from last iteration = 0.0176632
## iteration = 30 beta = 0.02075442 1.16449 -1.021039 1.162069 -0.01682317 -1.099308
## Distance from last iteration = 0.1218524
## iteration = 40 beta = 0.1477152 1.073935 -1.095803 1.173065 -0.02928672 -1.099446
## Distance from last iteration = 0.1414668
## iteration = 50 beta = 0.1205986 1.113298 -0.9688564 1.041548 -0.06052164 -0.9799622
## Distance from last iteration = 0.1737565
## iteration = 60 beta = 0.1129732 1.013455 -0.9389359 1.027017 -0.05479268 -0.9524152
## Distance from last iteration = 3.076897e-05
## iteration = 70 beta = 0.07847484 1.023609 -0.9626167 1.038256 -0.04132143 -0.9646895
## Distance from last iteration = 0.0002820075
## iteration = 80 beta = 0.07095625 1.070815 -0.9922385 1.053396 -0.04173298 -0.980045
## Distance from last iteration = 5.67119e-05
## iteration = 90 beta = 0.07070879 1.089326 -1.010678 1.072014 -0.03172497 -1.007943
## Distance from last iteration = 7.494584e-05
## iteration = 100 beta = 0.06932229 1.107081 -1.022656 1.081968 -0.03006122 -1.017227
## Distance from last iteration = 1.828823e-05
## iteration = 110 beta = 0.06329327 1.116114 -1.028553 1.089239 -0.0295718 -1.025201
## Distance from last iteration = 1.094912e-06
## iteration = 120 beta = 0.06704591 1.124846 -1.035163 1.090537 -0.02853558 -1.026653
## Distance from last iteration = 1.048773e-05
## iteration = 130 beta = 0.06694411 1.125318 -1.033447 1.086222 -0.02904691 -1.024076
## Distance from last iteration = 1.398283e-05
## iteration = 140 beta = 0.06392523 1.117632 -1.02875 1.085534 -0.02812343 -1.024316
## Distance from last iteration = 2.058142e-05
## iteration = 150 beta = 0.05796131 1.11061 -1.026311 1.085827 -0.02504412 -1.025536
## Distance from last iteration = 1.077455e-05
## iteration = 160 beta = 0.06594651 1.109383 -1.027915 1.085974 -0.0271385 -1.024832
## Distance from last iteration = 2.593489e-06
## iteration = 170 beta = 0.07014832 1.114645 -1.031966 1.086403 -0.02695946 -1.025621
## Distance from last iteration = 5.779123e-06
## iteration = 180 beta = 0.0696883 1.118459 -1.033234 1.085297 -0.02696528 -1.02516
## Distance from last iteration = 4.383226e-06
## iteration = 190 beta = 0.06977064 1.120923 -1.035369 1.086957 -0.02654733 -1.02698
## Distance from last iteration = 2.213467e-06
## iteration = 200 beta = 0.07263775 1.126912 -1.039287 1.087265 -0.02704987 -1.027656
## Distance from last iteration = 7.281153e-07
## [1] 0.07295149 1.12523513 -1.03819294 1.08639345 -0.02713150 -1.02667062
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.1045912507 -0.01640825 -8.015102e-03 -0.007844460 -6.446553e-03
## [2,] -0.0164082517 0.14023540 -6.540748e-02 0.011371833 -1.119750e-03
## [3,] -0.0080151020 -0.06540748 4.229590e-02 -0.012590862 8.142047e-05
## [4,] -0.0078444600 0.01137183 -1.259086e-02 0.020041181 2.209681e-03
## [5,] -0.0064465534 -0.00111975 8.142047e-05 0.002209681 4.480773e-03
## [6,] 0.0005674298 -0.01229699 1.228287e-02 -0.017117600 -4.048477e-03
## [,6]
## [1,] 0.0005674298
## [2,] -0.0122969901
## [3,] 0.0122828659
## [4,] -0.0171176002
## [5,] -0.0040484767
## [6,] 0.0185079131