nodbi
provides a single user interface for interacting with many NoSQL databases.
So far we support the following DBs:
Currently we have support for data.frame’s for the following operations
cran version
dev version
Start CouchDB on the cli or with the app
src_couchdb()
#> src: couchdb 2.3.0 [127.0.0.1/5984]
#> databases: cats, df, flights, foobar, geotest, mtcars, mtcars2, sofadb, test,
#> testing123
Start Elasticsearch, e.g.:
src_elastic()
#> src: elasticsearch 7.0.0 [127.0.0.1:9200]
#> databases: gbifgeo, mtcars, gbif, plos, diamonds_small
Start etcd after installing etcd (https://github.com/coreos/etcd/releases) by, e.g.: etcd
If you want to use classic Redis server, we do that through the redux package, and you’ll need to start up Redis by e.g,. redis-server
in your shell.
Start MongoDB: mongod
(may need to do sudo mongod
)
src <- src_couchdb()
docout <- docdb_create(src, key = "mtcars", value = mtcars)
head( docdb_get(src, "mtcars") )
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> 2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
src <- src_etcd()
ff <- docdb_create(src, "/mtcars", mtcars)
head( docdb_get(src, "/mtcars") )
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> 2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
Put the iris
dataset into ES
src <- src_elastic()
ff <- docdb_create(src, "iris", iris)
head( docdb_get(src, "iris") )
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 5.0 3.6 1.4 0.2 setosa
#> 4.9 3.1 1.5 0.1 setosa
#> 4.8 3.4 1.6 0.2 setosa
#> 5.4 3.9 1.3 0.4 setosa
#> 5.1 3.3 1.7 0.5 setosa
#> 5.2 3.4 1.4 0.2 setosa
docdb_get(src, "mtcars")
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
...
library("ggplot2")
src <- src_mongo(verbose = FALSE)
ff <- docdb_create(src, "diamonds", diamonds)
docdb_get(src, "diamonds")
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
...
docdb_get(src, "diamonds") %>%
group_by(cut) %>%
summarise(mean_depth = mean(depth), mean_price = mean(price))
#> # A tibble: 6 x 3
#> cut mean_depth mean_price
#> <chr> <dbl> <dbl>
#> 1 <NA> NA NA
#> 2 Fair 64.0 4359.
#> 3 Good 62.4 3929.
#> 4 Ideal 61.7 3458.
#> 5 Premium 61.3 4584.
#> 6 Very Good 61.8 3982.
nodbi
in R doing citation(package = 'nodbi')