Perform analysis of variance when the experimental units are spatially correlated. There are two methods to deal with spatial dependence: Spatial autoregressive models (see Scolforo, H.F et al. (2016) <doi:10.1007/s11676-015-0185-y>) and geostatistics (see Pontes, J. M., & Oliveira, M. S. D. (2004) <doi:10.1590/S1413-70542004000100018>). For both methods, there are three multicomparison procedure available: Tukey, multivariate T, and Scott-Knott.
Version: | 0.99.0 |
Depends: | R (≥ 2.10), stats, utils, graphics, geoR, shiny |
Imports: | MASS, Matrix, ScottKnott, car, gtools, multcomp, multcompView, mvtnorm, devtools, DT, shinyBS, xtable, shinythemes, rmarkdown, knitr, spdep, ape, spatialreg |
Published: | 2019-07-02 |
Author: | Lucas Roberto de Castro, Renato Ribeiro de Lima, Diogo Francisco Rossoni, Cristina Henriques Nogueira |
Maintainer: | Lucas Roberto de Castro <lrcastro at estudante.ufla.br> |
License: | GPL-3 |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | spANOVA results |
Reference manual: | spANOVA.pdf |
Package source: | spANOVA_0.99.0.tar.gz |
Windows binaries: | r-devel: not available, r-release: not available, r-oldrel: not available |
OS X binaries: | r-release: not available, r-oldrel: not available |
Please use the canonical form https://CRAN.R-project.org/package=spANOVA to link to this page.