
Package ‘tidyr’
March 2, 2019

Title Easily Tidy Data with 'spread()' and 'gather()' Functions

Version 0.8.3

Description An evolution of 'reshape2'. It's designed
specifically for data tidying (not general reshaping or aggregating)
and works well with 'dplyr' data pipelines.

License MIT + file LICENSE

URL http://tidyr.tidyverse.org, https://github.com/tidyverse/tidyr

BugReports https://github.com/tidyverse/tidyr/issues

Depends R (>= 3.1)

Imports dplyr (>= 0.7.0), glue, magrittr, purrr, Rcpp, rlang, stringi,
tibble, tidyselect (>= 0.2.5), utils

Suggests covr, gapminder, knitr, rmarkdown, testthat

LinkingTo Rcpp

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

NeedsCompilation yes

Author Hadley Wickham [aut, cre],
Lionel Henry [aut],
RStudio [cph]

Maintainer Hadley Wickham <hadley@rstudio.com>

Repository CRAN

Date/Publication 2019-03-01 23:00:03 UTC

R topics documented:
complete . 2
drop_na . 3

1

http://tidyr.tidyverse.org
https://github.com/tidyverse/tidyr
https://github.com/tidyverse/tidyr/issues

2 complete

expand . 4
extract . 6
fill . 7
full_seq . 8
gather . 8
nest . 10
replace_na . 11
separate . 12
separate_rows . 14
smiths . 15
spread . 15
table1 . 16
uncount . 17
unite . 18
unnest . 19
who . 21

Index 23

complete Complete a data frame with missing combinations of data.

Description

Turns implicit missing values into explicit missing values. This is a wrapper around expand(),
dplyr::left_join() and replace_na() that’s useful for completing missing combinations of
data.

Usage

complete(data, ..., fill = list())

Arguments

data A data frame.

... Specification of columns to expand. Columns can be atomic vectors or lists.
To find all unique combinations of x, y and z, including those not found in the
data, supply each variable as a separate argument. To find only the combinations
that occur in the data, use nest: expand(df, nesting(x, y, z)).
You can combine the two forms. For example, expand(df, nesting(school_id, student_id), date)
would produce a row for every student for each date.
For factors, the full set of levels (not just those that appear in the data) are used.
For continuous variables, you may need to fill in values that don’t appear in the
data: to do so use expressions like year = 2010:2020 or year = full_seq(year,1).
Length-zero (empty) elements are automatically dropped.

fill A named list that for each variable supplies a single value to use instead of NA
for missing combinations.

drop_na 3

Details

If you supply fill, these values will also replace existing explicit missing values in the data set.

Examples

library(dplyr, warn.conflicts = FALSE)
df <- tibble(

group = c(1:2, 1),
item_id = c(1:2, 2),
item_name = c("a", "b", "b"),
value1 = 1:3,
value2 = 4:6

)
df %>% complete(group, nesting(item_id, item_name))

You can also choose to fill in missing values
df %>% complete(group, nesting(item_id, item_name), fill = list(value1 = 0))

drop_na Drop rows containing missing values

Description

Drop rows containing missing values

Usage

drop_na(data, ...)

Arguments

data A data frame.

... A selection of columns. If empty, all variables are selected. You can supply bare
variable names, select all variables between x and z with x:z, exclude y with
-y. For more options, see the dplyr::select() documentation. See also the
section on selection rules below.

Rules for selection

Arguments for selecting columns are passed to tidyselect::vars_select() and are treated spe-
cially. Unlike other verbs, selecting functions make a strict distinction between data expressions
and context expressions.

• A data expression is either a bare name like x or an expression like x:y or c(x, y). In a data
expression, you can only refer to columns from the data frame.

• Everything else is a context expression in which you can only refer to objects that you have
defined with <-.

4 expand

For instance, col1:col3 is a data expression that refers to data columns, while seq(start, end)
is a context expression that refers to objects from the contexts.

If you really need to refer to contextual objects from a data expression, you can unquote them with
the tidy eval operator !!. This operator evaluates its argument in the context and inlines the result
in the surrounding function call. For instance, c(x, !! x) selects the x column within the data
frame and the column referred to by the object x defined in the context (which can contain either a
column name as string or a column position).

Examples

library(dplyr)
df <- tibble(x = c(1, 2, NA), y = c("a", NA, "b"))
df %>% drop_na()
df %>% drop_na(x)

expand Expand data frame to include all combinations of values

Description

expand() is often useful in conjunction with left_join if you want to convert implicit missing
values to explicit missing values. Or you can use it in conjunction with anti_join() to figure out
which combinations are missing.

Usage

expand(data, ...)

crossing(...)

nesting(...)

Arguments

data A data frame.

... Specification of columns to expand. Columns can be atomic vectors or lists.
To find all unique combinations of x, y and z, including those not found in the
data, supply each variable as a separate argument. To find only the combinations
that occur in the data, use nest: expand(df, nesting(x, y, z)).
You can combine the two forms. For example, expand(df, nesting(school_id, student_id), date)
would produce a row for every student for each date.
For factors, the full set of levels (not just those that appear in the data) are used.
For continuous variables, you may need to fill in values that don’t appear in the
data: to do so use expressions like year = 2010:2020 or year = full_seq(year,1).
Length-zero (empty) elements are automatically dropped.

expand 5

Details

crossing() is similar to expand.grid(), this never converts strings to factors, returns a tbl_df
without additional attributes, and first factors vary slowest. nesting() is the complement to
crossing(): it only keeps combinations of all variables that appear in the data.

See Also

complete() for a common application of expand: completing a data frame with missing combina-
tions.

Examples

library(dplyr)
All possible combinations of vs & cyl, even those that aren't
present in the data
expand(mtcars, vs, cyl)

Only combinations of vs and cyl that appear in the data
expand(mtcars, nesting(vs, cyl))

Implicit missings ---
df <- tibble(

year = c(2010, 2010, 2010, 2010, 2012, 2012, 2012),
qtr = c(1, 2, 3, 4, 1, 2, 3),
return = rnorm(7)

)
df %>% expand(year, qtr)
df %>% expand(year = 2010:2012, qtr)
df %>% expand(year = full_seq(year, 1), qtr)
df %>% complete(year = full_seq(year, 1), qtr)

Nesting ---
Each person was given one of two treatments, repeated three times
But some of the replications haven't happened yet, so we have
incomplete data:
experiment <- tibble(

name = rep(c("Alex", "Robert", "Sam"), c(3, 2, 1)),
trt = rep(c("a", "b", "a"), c(3, 2, 1)),
rep = c(1, 2, 3, 1, 2, 1),
measurment_1 = runif(6),
measurment_2 = runif(6)

)

We can figure out the complete set of data with expand()
Each person only gets one treatment, so we nest name and trt together:
all <- experiment %>% expand(nesting(name, trt), rep)
all

We can use anti_join to figure out which observations are missing
all %>% anti_join(experiment)

And use right_join to add in the appropriate missing values to the

6 extract

original data
experiment %>% right_join(all)
Or use the complete() short-hand
experiment %>% complete(nesting(name, trt), rep)

Generate all combinations with expand():
formulas <- list(

formula1 = Sepal.Length ~ Sepal.Width,
formula2 = Sepal.Length ~ Sepal.Width + Petal.Width,
formula3 = Sepal.Length ~ Sepal.Width + Petal.Width + Petal.Length

)
data <- split(iris, iris$Species)
crossing(formula = formulas, data)

extract Extract one column into multiple columns.

Description

Given a regular expression with capturing groups, extract() turns each group into a new column.
If the groups don’t match, or the input is NA, the output will be NA.

Usage

extract(data, col, into, regex = "([[:alnum:]]+)", remove = TRUE,
convert = FALSE, ...)

Arguments

data A data frame.

col Column name or position. This is passed to tidyselect::vars_pull().

This argument is passed by expression and supports quasiquotation (you can
unquote column names or column positions).

into Names of new variables to create as character vector.

regex a regular expression used to extract the desired values. The should be one group
(defined by ()) for each element of into.

remove If TRUE, remove input column from output data frame.

convert If TRUE, will run type.convert() with as.is = TRUE on new columns. This
is useful if the component columns are integer, numeric or logical.

... Other arguments passed on to regexec() to control how the regular expression
is processed.

fill 7

Examples

library(dplyr)
df <- data.frame(x = c(NA, "a-b", "a-d", "b-c", "d-e"))
df %>% extract(x, "A")
df %>% extract(x, c("A", "B"), "([[:alnum:]]+)-([[:alnum:]]+)")

If no match, NA:
df %>% extract(x, c("A", "B"), "([a-d]+)-([a-d]+)")

fill Fill in missing values.

Description

Fills missing values in selected columns using the previous entry. This is useful in the common
output format where values are not repeated, they’re recorded each time they change.

Usage

fill(data, ..., .direction = c("down", "up"))

Arguments

data A data frame.

... A selection of columns. If empty, nothing happens. You can supply bare variable
names, select all variables between x and z with x:z, exclude y with -y. For
more selection options, see the dplyr::select() documentation.

.direction Direction in which to fill missing values. Currently either "down" (the default)
or "up".

Details

Missing values are replaced in atomic vectors; NULLs are replaced in list.

Examples

df <- data.frame(Month = 1:12, Year = c(2000, rep(NA, 11)))
df %>% fill(Year)

8 gather

full_seq Create the full sequence of values in a vector.

Description

This is useful if you want to fill in missing values that should have been observed but weren’t. For
example, full_seq(c(1, 2, 4, 6), 1) will return 1:6.

Usage

full_seq(x, period, tol = 1e-06)

Arguments

x A numeric vector.

period Gap between each observation. The existing data will be checked to ensure that
it is actually of this periodicity.

tol Numerical tolerance for checking periodicity.

Examples

full_seq(c(1, 2, 4, 5, 10), 1)

gather Gather columns into key-value pairs.

Description

Gather takes multiple columns and collapses into key-value pairs, duplicating all other columns as
needed. You use gather() when you notice that you have columns that are not variables.

Usage

gather(data, key = "key", value = "value", ..., na.rm = FALSE,
convert = FALSE, factor_key = FALSE)

Arguments

data A data frame.

key, value Names of new key and value columns, as strings or symbols.
This argument is passed by expression and supports quasiquotation (you can
unquote strings and symbols). The name is captured from the expression with
rlang::ensym() (note that this kind of interface where symbols do not repre-
sent actual objects is now discouraged in the tidyverse; we support it here for
backward compatibility).

gather 9

... A selection of columns. If empty, all variables are selected. You can supply bare
variable names, select all variables between x and z with x:z, exclude y with
-y. For more options, see the dplyr::select() documentation. See also the
section on selection rules below.

na.rm If TRUE, will remove rows from output where the value column is NA.

convert If TRUE will automatically run type.convert() on the key column. This is
useful if the column types are actually numeric, integer, or logical.

factor_key If FALSE, the default, the key values will be stored as a character vector. If TRUE,
will be stored as a factor, which preserves the original ordering of the columns.

Rules for selection

Arguments for selecting columns are passed to tidyselect::vars_select() and are treated spe-
cially. Unlike other verbs, selecting functions make a strict distinction between data expressions
and context expressions.

• A data expression is either a bare name like x or an expression like x:y or c(x, y). In a data
expression, you can only refer to columns from the data frame.

• Everything else is a context expression in which you can only refer to objects that you have
defined with <-.

For instance, col1:col3 is a data expression that refers to data columns, while seq(start, end)
is a context expression that refers to objects from the contexts.

If you really need to refer to contextual objects from a data expression, you can unquote them with
the tidy eval operator !!. This operator evaluates its argument in the context and inlines the result
in the surrounding function call. For instance, c(x, !! x) selects the x column within the data
frame and the column referred to by the object x defined in the context (which can contain either a
column name as string or a column position).

Examples

library(dplyr)
From http://stackoverflow.com/questions/1181060
stocks <- tibble(

time = as.Date('2009-01-01') + 0:9,
X = rnorm(10, 0, 1),
Y = rnorm(10, 0, 2),
Z = rnorm(10, 0, 4)

)

gather(stocks, "stock", "price", -time)
stocks %>% gather("stock", "price", -time)

get first observation for each Species in iris data -- base R
mini_iris <- iris[c(1, 51, 101),]
gather Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
gather(mini_iris, key = "flower_att", value = "measurement",

Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)
same result but less verbose
gather(mini_iris, key = "flower_att", value = "measurement", -Species)

10 nest

repeat iris example using dplyr and the pipe operator
library(dplyr)
mini_iris <-

iris %>%
group_by(Species) %>%
slice(1)

mini_iris %>% gather(key = "flower_att", value = "measurement", -Species)

nest Nest repeated values in a list-variable.

Description

There are many possible ways one could choose to nest columns inside a data frame. nest() creates
a list of data frames containing all the nested variables: this seems to be the most useful form in
practice.

Usage

nest(data, ..., .key = "data")

Arguments

data A data frame.

... A selection of columns. If empty, all variables are selected. You can supply bare
variable names, select all variables between x and z with x:z, exclude y with
-y. For more options, see the dplyr::select() documentation. See also the
section on selection rules below.

.key The name of the new column, as a string or symbol.
This argument is passed by expression and supports quasiquotation (you can
unquote strings and symbols). The name is captured from the expression with
rlang::ensym() (note that this kind of interface where symbols do not repre-
sent actual objects is now discouraged in the tidyverse; we support it here for
backward compatibility).

Rules for selection

Arguments for selecting columns are passed to tidyselect::vars_select() and are treated spe-
cially. Unlike other verbs, selecting functions make a strict distinction between data expressions
and context expressions.

• A data expression is either a bare name like x or an expression like x:y or c(x, y). In a data
expression, you can only refer to columns from the data frame.

• Everything else is a context expression in which you can only refer to objects that you have
defined with <-.

replace_na 11

For instance, col1:col3 is a data expression that refers to data columns, while seq(start, end)
is a context expression that refers to objects from the contexts.

If you really need to refer to contextual objects from a data expression, you can unquote them with
the tidy eval operator !!. This operator evaluates its argument in the context and inlines the result
in the surrounding function call. For instance, c(x, !! x) selects the x column within the data
frame and the column referred to by the object x defined in the context (which can contain either a
column name as string or a column position).

See Also

unnest() for the inverse operation.

Examples

library(dplyr)
as_tibble(iris) %>% nest(-Species)
as_tibble(chickwts) %>% nest(weight)

if (require("gapminder")) {
gapminder %>%
group_by(country, continent) %>%
nest()

gapminder %>%
nest(-country, -continent)

}

replace_na Replace missing values

Description

Replace missing values

Usage

replace_na(data, replace, ...)

Arguments

data A data frame or vector.
replace If data is a data frame, a named list giving the value to replace NA with for each

column. If data is a vector, a single value used for replacement.
... Additional arguments for methods. Currently unused.

Value

If data is a data frame, returns a data frame. If data is a vector, returns a vector of class determined
by the union of data and replace.

12 separate

See Also

na_if to replace specified values with a NA. coalesce to replace missing values with a specified
value. recode to more generally replace values.

Examples

library(dplyr)
df <- tibble(x = c(1, 2, NA), y = c("a", NA, "b"), z = list(1:5, NULL, 10:20))
df %>% replace_na(list(x = 0, y = "unknown"))
df %>% mutate(x = replace_na(x, 0))

NULL are the list-col equivalent of NAs
df %>% replace_na(list(z = list(5)))

df$x %>% replace_na(0)
df$y %>% replace_na("unknown")

separate Separate one column into multiple columns.

Description

Given either regular expression or a vector of character positions, separate() turns a single char-
acter column into multiple columns.

Usage

separate(data, col, into, sep = "[^[:alnum:]]+", remove = TRUE,
convert = FALSE, extra = "warn", fill = "warn", ...)

Arguments

data A data frame.

col Column name or position. This is passed to tidyselect::vars_pull().
This argument is passed by expression and supports quasiquotation (you can
unquote column names or column positions).

into Names of new variables to create as character vector. Use NA to omit the variable
in the output.

sep Separator between columns.
If character, is interpreted as a regular expression. The default value is a regular
expression that matches any sequence of non-alphanumeric values.
If numeric, interpreted as positions to split at. Positive values start at 1 at the
far-left of the string; negative value start at -1 at the far-right of the string. The
length of sep should be one less than into.

remove If TRUE, remove input column from output data frame.

separate 13

convert If TRUE, will run type.convert() with as.is = TRUE on new columns. This
is useful if the component columns are integer, numeric or logical.

extra If sep is a character vector, this controls what happens when there are too many
pieces. There are three valid options:

• "warn" (the default): emit a warning and drop extra values.
• "drop": drop any extra values without a warning.
• "merge": only splits at most length(into) times

fill If sep is a character vector, this controls what happens when there are not
enough pieces. There are three valid options:

• "warn" (the default): emit a warning and fill from the right
• "right": fill with missing values on the right
• "left": fill with missing values on the left

... Additional arguments passed on to methods.

See Also

unite(), the complement, extract() which uses regular expression capturing groups.

Examples

library(dplyr)
df <- data.frame(x = c(NA, "a.b", "a.d", "b.c"))
df %>% separate(x, c("A", "B"))

If you just want the second variable:
df %>% separate(x, c(NA, "B"))

If every row doesn't split into the same number of pieces, use
the extra and fill arguments to control what happens
df <- data.frame(x = c("a", "a b", "a b c", NA))
df %>% separate(x, c("a", "b"))
The same behaviour drops the c but no warnings
df %>% separate(x, c("a", "b"), extra = "drop", fill = "right")
Another option:
df %>% separate(x, c("a", "b"), extra = "merge", fill = "left")
Or you can keep all three
df %>% separate(x, c("a", "b", "c"))

If only want to split specified number of times use extra = "merge"
df <- data.frame(x = c("x: 123", "y: error: 7"))
df %>% separate(x, c("key", "value"), ": ", extra = "merge")

Use regular expressions to separate on multiple characters:
df <- data.frame(x = c(NA, "a?b", "a.d", "b:c"))
df %>% separate(x, c("A","B"), sep = "([\\.\\?\\:])")

convert = TRUE detects column classes
df <- data.frame(x = c("a:1", "a:2", "c:4", "d", NA))
df %>% separate(x, c("key","value"), ":") %>% str

14 separate_rows

df %>% separate(x, c("key","value"), ":", convert = TRUE) %>% str

Argument col can take quasiquotation to work with strings
var <- "x"
df %>% separate(!!var, c("key","value"), ":")

separate_rows Separate a collapsed column into multiple rows.

Description

If a variable contains observations with multiple delimited values, this separates the values and
places each one in its own row.

Usage

separate_rows(data, ..., sep = "[^[:alnum:].]+", convert = FALSE)

Arguments

data A data frame.

... A selection of columns. If empty, nothing happens. You can supply bare variable
names, select all variables between x and z with x:z, exclude y with -y. For
more selection options, see the dplyr::select() documentation.

sep Separator delimiting collapsed values.

convert If TRUE will automatically run type.convert() on the key column. This is
useful if the column types are actually numeric, integer, or logical.

Rules for selection

Arguments for selecting columns are passed to tidyselect::vars_select() and are treated spe-
cially. Unlike other verbs, selecting functions make a strict distinction between data expressions
and context expressions.

• A data expression is either a bare name like x or an expression like x:y or c(x, y). In a data
expression, you can only refer to columns from the data frame.

• Everything else is a context expression in which you can only refer to objects that you have
defined with <-.

For instance, col1:col3 is a data expression that refers to data columns, while seq(start, end)
is a context expression that refers to objects from the contexts.

If you really need to refer to contextual objects from a data expression, you can unquote them with
the tidy eval operator !!. This operator evaluates its argument in the context and inlines the result
in the surrounding function call. For instance, c(x, !! x) selects the x column within the data
frame and the column referred to by the object x defined in the context (which can contain either a
column name as string or a column position).

smiths 15

Examples

df <- data.frame(
x = 1:3,
y = c("a", "d,e,f", "g,h"),
z = c("1", "2,3,4", "5,6"),
stringsAsFactors = FALSE

)
separate_rows(df, y, z, convert = TRUE)

smiths Some data about the Smith family.

Description

A small demo dataset describing John and Mary Smith.

Usage

smiths

Format

A data frame with 2 rows and 5 columns.

spread Spread a key-value pair across multiple columns.

Description

Spread a key-value pair across multiple columns.

Usage

spread(data, key, value, fill = NA, convert = FALSE, drop = TRUE,
sep = NULL)

Arguments

data A data frame.

key, value Column names or positions. This is passed to tidyselect::vars_pull().
These arguments are passed by expression and support quasiquotation (you can
unquote column names or column positions).

16 table1

fill If set, missing values will be replaced with this value. Note that there are two
types of missingness in the input: explicit missing values (i.e. NA), and implicit
missings, rows that simply aren’t present. Both types of missing value will be
replaced by fill.

convert If TRUE, type.convert() with asis = TRUE will be run on each of the new
columns. This is useful if the value column was a mix of variables that was
coerced to a string. If the class of the value column was factor or date, note
that will not be true of the new columns that are produced, which are coerced to
character before type conversion.

drop If FALSE, will keep factor levels that don’t appear in the data, filling in missing
combinations with fill.

sep If NULL, the column names will be taken from the values of key variable. If non-
NULL, the column names will be given by "<key_name><sep><key_value>".

Examples

library(dplyr)
stocks <- data.frame(

time = as.Date('2009-01-01') + 0:9,
X = rnorm(10, 0, 1),
Y = rnorm(10, 0, 2),
Z = rnorm(10, 0, 4)

)
stocksm <- stocks %>% gather(stock, price, -time)
stocksm %>% spread(stock, price)
stocksm %>% spread(time, price)

Spread and gather are complements
df <- data.frame(x = c("a", "b"), y = c(3, 4), z = c(5, 6))
df %>% spread(x, y) %>% gather("x", "y", a:b, na.rm = TRUE)

Use 'convert = TRUE' to produce variables of mixed type
df <- data.frame(row = rep(c(1, 51), each = 3),

var = c("Sepal.Length", "Species", "Species_num"),
value = c(5.1, "setosa", 1, 7.0, "versicolor", 2))

df %>% spread(var, value) %>% str
df %>% spread(var, value, convert = TRUE) %>% str

table1 Example tabular representations

Description

Data sets that demonstrate multiple ways to layout the same tabular data.

uncount 17

Usage

table1

table2

table3

table4a

table4b

table5

Format

An object of class tbl_df (inherits from tbl, data.frame) with 6 rows and 4 columns.

Details

table1, table2, table3, table4a, table4b, and table5 all display the number of TB cases doc-
umented by the World Health Organization in Afghanistan, Brazil, and China between 1999 and
2000. The data contains values associated with four variables (country, year, cases, and popula-
tion), but each table organizes the values in a different layout.

The data is a subset of the data contained in the World Health Organization Global Tuberculosis
Report

Source

http://www.who.int/tb/country/data/download/en/

uncount "Uncount" a data frame

Description

Performs the opposite operation to dplyr::count(), duplicating rows according to a weighting
variable (or expression).

Usage

uncount(data, weights, .remove = TRUE, .id = NULL)

http://www.who.int/tb/country/data/download/en/

18 unite

Arguments

data A data frame, tibble, or grouped tibble.

weights A vector of weights. Evaluated in the context of data; supports quasiquotation.

.remove If TRUE, and weights is a single

.id Supply a string to create a new variable which gives a unique identifier for each
created row.

Examples

df <- tibble::tibble(x = c("a", "b"), n = c(1, 2))
uncount(df, n)
uncount(df, n, .id = "id")

You can also use constants
uncount(df, 2)

Or expressions
uncount(df, 2 / n)

unite Unite multiple columns into one.

Description

Convenience function to paste together multiple columns into one.

Usage

unite(data, col, ..., sep = "_", remove = TRUE)

Arguments

data A data frame.

col The name of the new column, as a string or symbol.
This argument is passed by expression and supports quasiquotation (you can
unquote strings and symbols). The name is captured from the expression with
rlang::ensym() (note that this kind of interface where symbols do not repre-
sent actual objects is now discouraged in the tidyverse; we support it here for
backward compatibility).

... A selection of columns. If empty, all variables are selected. You can supply bare
variable names, select all variables between x and z with x:z, exclude y with
-y. For more options, see the dplyr::select() documentation. See also the
section on selection rules below.

sep Separator to use between values.

remove If TRUE, remove input columns from output data frame.

unnest 19

Rules for selection

Arguments for selecting columns are passed to tidyselect::vars_select() and are treated spe-
cially. Unlike other verbs, selecting functions make a strict distinction between data expressions
and context expressions.

• A data expression is either a bare name like x or an expression like x:y or c(x, y). In a data
expression, you can only refer to columns from the data frame.

• Everything else is a context expression in which you can only refer to objects that you have
defined with <-.

For instance, col1:col3 is a data expression that refers to data columns, while seq(start, end)
is a context expression that refers to objects from the contexts.

If you really need to refer to contextual objects from a data expression, you can unquote them with
the tidy eval operator !!. This operator evaluates its argument in the context and inlines the result
in the surrounding function call. For instance, c(x, !! x) selects the x column within the data
frame and the column referred to by the object x defined in the context (which can contain either a
column name as string or a column position).

See Also

separate(), the complement.

Examples

library(dplyr)
unite_(mtcars, "vs_am", c("vs","am"))

Separate is the complement of unite
mtcars %>%

unite("vs_am", vs, am) %>%
separate(vs_am, c("vs", "am"))

unnest Unnest a list column.

Description

If you have a list-column, this makes each element of the list its own row. unnest() can handle
list-columns that contain atomic vectors, lists, or data frames (but not a mixture of the different
types).

Usage

unnest(data, ..., .drop = NA, .id = NULL, .sep = NULL,
.preserve = NULL)

20 unnest

Arguments

data A data frame.

... Specification of columns to unnest. Use bare variable names or functions of
variables. If omitted, defaults to all list-cols.

.drop Should additional list columns be dropped? By default, unnest will drop them
if unnesting the specified columns requires the rows to be duplicated.

.id Data frame identifier - if supplied, will create a new column with name .id,
giving a unique identifier. This is most useful if the list column is named.

.sep If non-NULL, the names of unnested data frame columns will combine the name
of the original list-col with the names from nested data frame, separated by .sep.

.preserve Optionally, list-columns to preserve in the output. These will be duplicated in
the same way as atomic vectors. This has dplyr::select semantics so you can pre-
serve multiple variables with .preserve = c(x, y) or .preserve = starts_with("list").

Details

If you unnest multiple columns, parallel entries must have the same length or number of rows (if a
data frame).

See Also

nest() for the inverse operation.

Examples

library(dplyr)
df <- tibble(

x = 1:3,
y = c("a", "d,e,f", "g,h")

)
df %>%

transform(y = strsplit(y, ",")) %>%
unnest(y)

Or just
df %>%

unnest(y = strsplit(y, ","))

It also works if you have a column that contains other data frames!
df <- tibble(

x = 1:2,
y = list(
tibble(z = 1),
tibble(z = 3:4)

)
)
df %>% unnest(y)

You can also unnest multiple columns simultaneously

who 21

df <- tibble(
a = list(c("a", "b"), "c"),
b = list(1:2, 3),
c = c(11, 22)

)
df %>% unnest(a, b)
If you omit the column names, it'll unnest all list-cols
df %>% unnest()

You can also choose to preserve one or more list-cols
df %>% unnest(a, .preserve = b)

Nest and unnest are inverses
df <- data.frame(x = c(1, 1, 2), y = 3:1)
df %>% nest(y)
df %>% nest(y) %>% unnest()

If you have a named list-column, you may want to supply .id
df <- tibble(

x = 1:2,
y = list(a = 1, b = 3:4)

)
unnest(df, .id = "name")

who World Health Organization TB data

Description

A subset of data from the World Health Organization Global Tuberculosis Report, and accompany-
ing global populations.

Usage

who

population

Format

A dataset with the variables

country Country name

iso2, iso3 2 & 3 letter ISO country codes

year Year

new_sp_m014 - new_rel_f65 Counts of new TB cases recorded by group. Column names encode
three variables that describe the group (see details).

22 who

Details

The data uses the original codes given by the World Health Organization. The column names for
columns five through 60 are made by combining new_ to a code for method of diagnosis (rel =
relapse, sn = negative pulmonary smear, sp = positive pulmonary smear, ep = extrapulmonary) to a
code for gender (f = female, m = male) to a code for age group (014 = 0-14 yrs of age, 1524 = 15-24
years of age, 2534 = 25 to 34 years of age, 3544 = 35 to 44 years of age, 4554 = 45 to 54 years of
age, 5564 = 55 to 64 years of age, 65 = 65 years of age or older).

Source

http://www.who.int/tb/country/data/download/en/

http://www.who.int/tb/country/data/download/en/

Index

∗Topic datasets
smiths, 15
table1, 16
who, 21

coalesce, 12
complete, 2
complete(), 5
crossing (expand), 4

dplyr::count(), 17
dplyr::left_join(), 2
dplyr::select, 20
dplyr::select(), 3, 7, 9, 10, 14, 18
drop_na, 3

expand, 4
expand(), 2
expand.grid(), 5
extract, 6
extract(), 13

fill, 7
full_seq, 2, 4, 8

gather, 8

na_if, 12
nest, 10
nest(), 20
nesting (expand), 4

population (who), 21

quasiquotation, 6, 8, 10, 12, 15, 18

recode, 12
regexec(), 6
replace_na, 11
replace_na(), 2
rlang::ensym(), 8, 10, 18

separate, 12
separate(), 19
separate_rows, 14
smiths, 15
spread, 15

table1, 16
table2 (table1), 16
table3 (table1), 16
table4a (table1), 16
table4b (table1), 16
table5 (table1), 16
tidyselect::vars_pull(), 6, 12, 15
tidyselect::vars_select(), 3, 9, 10, 14,

19
type.convert(), 6, 9, 13, 14, 16

uncount, 17
unite, 18
unite(), 13
unnest, 19
unnest(), 11

who, 21

23

	complete
	drop_na
	expand
	extract
	fill
	full_seq
	gather
	nest
	replace_na
	separate
	separate_rows
	smiths
	spread
	table1
	uncount
	unite
	unnest
	who
	Index

