TVsMiss: Variable Selection for Missing Data

Use a regularization likelihood method to achieve variable selection purpose. Likelihood can be worked with penalty lasso, smoothly clipped absolute deviations (SCAD), and minimax concave penalty (MCP). Tuning parameter selection techniques include cross validation (CV), Bayesian information criterion (BIC) (low and high), stability of variable selection (sVS), stability of BIC (sBIC), and stability of estimation (sEST). More details see Jiwei Zhao, Yang Yang, and Yang Ning (2018) <arXiv:1703.06379> "Penalized pairwise pseudo likelihood for variable selection with nonignorable missing data." Statistica Sinica.

Version: 0.1.1
Imports: glmnet, Rcpp
LinkingTo: Rcpp
Published: 2018-04-05
Author: Jiwei Zhao, Yang Yang, and Ning Yang
Maintainer: Yang Yang <yyang39 at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
Materials: NEWS
In views: MissingData
CRAN checks: TVsMiss results


Reference manual: TVsMiss.pdf
Package source: TVsMiss_0.1.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X binaries: r-release: TVsMiss_0.1.1.tgz, r-oldrel: TVsMiss_0.1.1.tgz
Old sources: TVsMiss archive


Please use the canonical form to link to this page.