
Package ‘mlr3tuning’
September 30, 2019

Title Tuning for 'mlr3'

Version 0.1.0

Description Implements methods for hyperparameter tuning with
'mlr3', e.g. Grid Search, Random Search, or Simulated Annealing.
Various termination criteria can be set and combined. The class
'AutoTuner' provides a convenient way to perform nested resampling in
combination with 'mlr3'.

License LGPL-3

URL https://mlr3tuning.mlr-org.com,

https://github.com/mlr-org/mlr3tuning

BugReports https://github.com/mlr-org/mlr3tuning/issues

Depends R (>= 3.1.0)

Imports checkmate (>= 1.9.4), data.table, lgr, mlr3, mlr3misc,
paradox, R6

Suggests GenSA, rpart, testthat

Encoding UTF-8

NeedsCompilation no

RoxygenNote 6.1.1

Collate 'AutoTuner.R' 'mlr_terminators.R' 'Terminator.R'
'TerminatorClockTime.R' 'TerminatorCombo.R' 'TerminatorEvals.R'
'TerminatorModelTime.R' 'TerminatorNone.R'
'TerminatorPerfReached.R' 'TerminatorStagnation.R'
'mlr_tuners.R' 'Tuner.R' 'TunerDesignPoints.R' 'TunerGenSA.R'
'TunerGridSearch.R' 'TunerRandomSearch.R' 'TuningInstance.R'
'assertions.R' 'helper.R' 'sugar.R' 'zzz.R'

Author Michel Lang [cre, aut] (<https://orcid.org/0000-0001-9754-0393>),
Jakob Richter [aut] (<https://orcid.org/0000-0003-4481-5554>),
Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>),
Daniel Schalk [aut] (<https://orcid.org/0000-0003-0950-1947>)

Maintainer Michel Lang <michellang@gmail.com>

Repository CRAN

Date/Publication 2019-09-30 15:20:02 UTC

1

https://mlr3tuning.mlr-org.com
https://github.com/mlr-org/mlr3tuning
https://github.com/mlr-org/mlr3tuning/issues

2 mlr3tuning-package

R topics documented:
mlr3tuning-package . 2
AutoTuner . 3
mlr_terminators . 4
mlr_tuners . 5
Terminator . 6
TerminatorClockTime . 7
TerminatorCombo . 7
TerminatorEvals . 8
TerminatorModelTime . 9
TerminatorNone . 10
TerminatorPerfReached . 10
TerminatorStagnation . 11
tnr . 12
Tuner . 12
TunerDesignPoints . 15
TunerGenSA . 15
TunerGridSearch . 16
TunerRandomSearch . 17
TuningInstance . 18

Index 23

mlr3tuning-package mlr3tuning: Tuning for ’mlr3’

Description

Implements methods for hyperparameter tuning with ’mlr3’, e.g. Grid Search, Random Search, or
Simulated Annealing. Various termination criteria can be set and combined. The class ’AutoTuner’
provides a convenient way to perform nested resampling in combination with ’mlr3’.

Author(s)

Maintainer: Michel Lang <michellang@gmail.com> (0000-0001-9754-0393)
Authors:

• Jakob Richter <jakob1richter@gmail.com> (0000-0003-4481-5554)
• Bernd Bischl <bernd_bischl@gmx.net> (0000-0001-6002-6980)
• Daniel Schalk <daniel.schalk@stat.uni-muenchen.de> (0000-0003-0950-1947)

See Also

Useful links:

• https://mlr3tuning.mlr-org.com

• https://github.com/mlr-org/mlr3tuning

• Report bugs at https://github.com/mlr-org/mlr3tuning/issues

https://mlr3tuning.mlr-org.com
https://github.com/mlr-org/mlr3tuning
https://github.com/mlr-org/mlr3tuning/issues

AutoTuner 3

AutoTuner AutoTuner

Description

The AutoTuner is a mlr3::Learner which auto-tunes by first tuning the hyperparameters of its en-
capsulated learner on the training data, then setting the optimal configuration in the learner, then
finally fitting the model on the complete training data. Note that this class allows to perform nested
resampling by passing an AutoTuner object to mlr3::resample() or mlr3::benchmark().

Format

R6::R6Class object inheriting from mlr3::Learner.

Construction

at = AutoTuner$new(learner, resampling, measures, tune_ps, terminator, tuner, bm_args = list())

• learner :: mlr3::Learner
Learner to tune, see TuningInstance.

• resampling :: mlr3::Resampling
Resampling strategy during tuning, see TuningInstance.

• measures :: list of mlr3::Measure
Performance measures. The first one is optimized, see TuningInstance.

• tune_ps :: paradox::ParamSet
Hyperparameter search space, see TuningInstance.

• terminator :: Terminator
When to stop tuning, see TuningInstance.

• tuner :: Tuner
Tuning algorithm to run.

• bm_args :: list()
Further arguments for mlr3::benchmark(), see TuningInstance.

Fields

All fields from Learner, and additionally:

• instance_args :: list All arguments from construction to create the TuningInstance.
• tuner :: Tuner; from construction.
• store_tuning_instance :: logical(1)

If TRUE, stores the internally created TuningInstance with all intermediate results in slot $tuning_instance.
By default, this is TRUE.

• learner :: mlr3::Learner Trained learner
• tuning_instance :: TuningInstance

Internally created tuning instance with all intermediate results.
• tuning_result :: named list

Short-cut to result from TuningInstance.

4 mlr_terminators

Methods

All methods from Learner, and additionally:

• archive(unnest = "params")
character(1) -> data.table::data.table()
Short-cut to method from TuningInstance.

Examples

library(mlr3)
library(paradox)
task = tsk("iris")
learner = lrn("classif.rpart")
resampling = rsmp("holdout")
measures = msr("classif.ce")
param_set = ParamSet$new(

params = list(ParamDbl$new("cp", lower = 0.001, upper = 0.1)))

terminator = term("evals", n_evals = 5)
tuner = tnr("grid_search")
at = AutoTuner$new(learner, resampling, measures, param_set, terminator, tuner)
at$store_tuning_instance = TRUE

at$train(task)
at$model
at$learner

mlr_terminators Dictionary of Terminators

Description

A simple mlr3misc::Dictionary storing objects of class Terminator. Each terminator has an associ-
ated help page, see mlr_terminators_[id].

This dictionary can get populated with additional terminators by add-on packages.

For a more convenient way to retrieve and construct terminator, see term().

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

Methods

See mlr3misc::Dictionary.

mlr_tuners 5

See Also

Sugar function: term()

Other Terminator: TerminatorClockTime, TerminatorCombo, TerminatorEvals, TerminatorModelTime,
TerminatorNone, TerminatorPerfReached, TerminatorStagnation, Terminator

Examples

term("evals", n_evals = 10)

mlr_tuners Dictionary of Tuners

Description

A simple mlr3misc::Dictionary storing objects of class Tuner. Each tuner has an associated help
page, see mlr_tuners_[id].

This dictionary can get populated with additional tuners by add-on packages.

For a more convenient way to retrieve and construct tuner, see tnr().

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

Methods

See mlr3misc::Dictionary.

See Also

Sugar function: tnr()

Other Tuner: TunerDesignPoints, TunerGenSA, TunerGridSearch, TunerRandomSearch, Tuner

Examples

mlr_tuners$get("grid_search")
tnr("random_search")

6 Terminator

Terminator Abstract Terminator Class

Description

Abstract Terminator class that implements the base functionality each terminator must provide. A
terminator is an object that determines when to stop the tuning.

Termination of tuning works as follows:

• Evaluations in a tuner are performed in batches.

• Before and after each batch evaluation, the Terminator is checked, and if it is positive, we stop.

• The tuning algorithm itself might decide not to produce any more points, or even might decide
to do a smaller batch in its last evaluation.

Therefore the following note seems in order: While it is definitely possible to execute a fine-grained
control for termination, and for many tuners we can specify exactly when to stop, it might happen
that too few or even too many evaluations are performed, especially if multiple points are evaluated
in a single batch (c.f. batch size parameter of many tuners). So it is advised to check the size of the
returned archive, in particular if you are benchmarking multiple tuners.

Format

R6::R6Class object.

Construction

t = Terminator$new(param_set = ParamSet$new())

• param_set :: paradox::ParamSet
Set of control parameters for terminator.

Fields

• param_set :: paradox::ParamSet; from construction.

Methods

• is_terminated(instance)
TuningInstance -> logical(1)
Is TRUE iff the termination criterion is positive, and FALSE otherwise. Must be implemented in
each subclass.

See Also

Other Terminator: TerminatorClockTime, TerminatorCombo, TerminatorEvals, TerminatorModelTime,
TerminatorNone, TerminatorPerfReached, TerminatorStagnation, mlr_terminators

TerminatorClockTime 7

TerminatorClockTime Terminator that stops according to the clock time

Description

Class to terminate the tuning either after the complete process took a number of seconds on the
clock or a fixed time point has been reached (as reported by Sys.time()).

Format

R6::R6Class object inheriting from Terminator.

Construction

TerminatorClockTime$new()
term("clock_time")

Parameters

• secs :: numeric(1)
Maximum allowed time, in seconds, default is 100. Mutually exclusive with argument stop_time.

• stop_time :: POSIXct(1)
Terminator stops after this point in time. Mutually exclusive with argument secs.

See Also

Other Terminator: TerminatorCombo, TerminatorEvals, TerminatorModelTime, TerminatorNone,
TerminatorPerfReached, TerminatorStagnation, Terminator, mlr_terminators

Examples

term("clock_time", secs = 1800)

stop_time = as.POSIXct("2030-01-01 00:00:00")
term("clock_time", stop_time = stop_time)

TerminatorCombo Combine Terminators

Description

This class takes multiple Terminators and terminates as soon as one or all of the included terminators
are positive.

Format

R6::R6Class object inheriting from Terminator.

8 TerminatorEvals

Construction

TerminatorCombo$new(terminators = list(TerminatorNone$new()))
term("combo")

• terminators :: list()
List of objects of class Terminator.

Parameters

• any :: logical(1)
Terminate iff any included terminator is positive? (not all), default is ‘TRUE.

See Also

Other Terminator: TerminatorClockTime, TerminatorEvals, TerminatorModelTime, TerminatorNone,
TerminatorPerfReached, TerminatorStagnation, Terminator, mlr_terminators

Examples

term("combo",
list(term("model_time", secs = 60), term("evals", n_evals = 10)),
any = FALSE

)

TerminatorEvals Terminator that stops after a number of evaluations

Description

Class to terminate the tuning depending on the number of evaluations. An evaluation is defined by
one resampling of a parameter value.

Format

R6::R6Class object inheriting from Terminator.

Construction

TerminatorEvals$new()
term("evals")

Parameters

• n_evals :: integer(1)
Number of allowed evaluations, default is 100L

TerminatorModelTime 9

See Also

Other Terminator: TerminatorClockTime, TerminatorCombo, TerminatorModelTime, TerminatorNone,
TerminatorPerfReached, TerminatorStagnation, Terminator, mlr_terminators

Examples

TerminatorEvals$new()
term("evals", n_evals = 5)

TerminatorModelTime Terminator that stops after a budget of model evaluation time is de-
pleted

Description

Class to terminate the tuning after a given model evaluation budget is exceeded. The terminator
measures the used time to train and predict all models contained in the archive.

Format

R6::R6Class object inheriting from Terminator.

Construction

TerminatorModelTime$new()
term("model_time")

Parameters

• secs :: numeric(1)
Maximum allowed time, in seconds, default is 0.

See Also

Other Terminator: TerminatorClockTime, TerminatorCombo, TerminatorEvals, TerminatorNone,
TerminatorPerfReached, TerminatorStagnation, Terminator, mlr_terminators

Examples

TerminatorModelTime$new()
term("model_time", secs = 10 * 3600)

10 TerminatorPerfReached

TerminatorNone Terminator that never stops.

Description

Mainly useful for grid search, or maybe other tuners, where the stopping is inherently controlled by
the tuner itself.

Format

R6::R6Class object inheriting from Terminator.

Construction

t = TerminatorNone$new()
term("none")

See Also

Other Terminator: TerminatorClockTime, TerminatorCombo, TerminatorEvals, TerminatorModelTime,
TerminatorPerfReached, TerminatorStagnation, Terminator, mlr_terminators

TerminatorPerfReached Terminator that stops when a performance level has been reached

Description

Class to terminate the tuning after a performance level has been hit.

Format

R6::R6Class object inheriting from Terminator.

Construction

TerminatorPerfReached$new()
term("perf_reached")

Parameters

• level :: numeric(1)
Performance level that needs to be reached, default is 0. Terminates if the performance ex-
ceeds (respective measure has to be maximized) or falls below (respective measure has to be
minimized) this value.

TerminatorStagnation 11

See Also

Other Terminator: TerminatorClockTime, TerminatorCombo, TerminatorEvals, TerminatorModelTime,
TerminatorNone, TerminatorStagnation, Terminator, mlr_terminators

Examples

TerminatorPerfReached$new()
term("perf_reached")

TerminatorStagnation Terminator that stops when tuning does not improve

Description

Class to terminate the tuning after the performance stagnates, i.e. does not improve more than
threshold over the last iters iterations.

Format

R6::R6Class object inheriting from Terminator.

Construction

t = TerminatorStagnation$new()

Parameters

• iters :: integer(1)
Number of iterations to evaluate the performance improvement on, default is 10.

• threshold :: numeric(1)
If the improvement is less than threshold, tuning is stopped, default is 0.

See Also

Other Terminator: TerminatorClockTime, TerminatorCombo, TerminatorEvals, TerminatorModelTime,
TerminatorNone, TerminatorPerfReached, Terminator, mlr_terminators

Examples

TerminatorStagnation$new()
term("stagnation", iters = 5, threshold = 1e-5)

12 Tuner

tnr Syntactic Sugar for Tuner and Terminator Construction

Description

This function complements mlr_tuners and mlr_terminators with functions in the spirit of mlr3::mlr_sugar.

Usage

tnr(.key, ...)

term(.key, ...)

Arguments

.key :: character(1)
Key passed to the respective mlr3misc::Dictionary to retrieve the object.

... :: named list()
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet, or to be set as public field. See mlr3misc::dictionary_sugar()
for more details.

Value

Tuner for tnr() and Terminator for term().

Examples

term("evals", n_evals = 10)
tnr("random_search")

Tuner Tuner

Description

Abstract Tuner class that implements the base functionality each tuner must provide. A tuner is an
object that describes the tuning strategy, i.e. how to optimize the black-box function and its feasible
set defined by the TuningInstance object.

A list of measures can be passed to the instance, and they will always be all evaluated. However,
single-criteria tuners optimize only the first measure.

A tuner must write its result to the assign_result method of the Tuninginstance at the end of
its tuning in order to store the best selected hyperparameter configuration and its estimated perfor-
mance vector.

Tuner 13

Format

R6::R6Class object.

Construction

tuner = Tuner$new(param_set, param_classes, properties, packages = character())

• param_set :: paradox::ParamSet
Set of control parameters for tuner.

• param_classes :: character()
Supported parameter classes for learner hyperparameters that the tuner can optimize, sub-
classes of paradox::Param.

• properties :: character()
Set of properties of the tuner. Must be a subset of mlr_reflections$tuner_properties.

• packages :: character()
Set of required packages. Note that these packages will be loaded via requireNamespace(),
and are not attached.

Fields

• param_set :: paradox::ParamSet; from construction.

• param_classes :: character()

• properties :: ‘character(); from construction.

• packages :: character(); from construction.

Methods

• tune(instance)
TuningInstance -> self
Performs the tuning on a TuningInstance until termination.

Private Methods

• tune_internal(instance) -> NULL
Abstract base method. Implement to specify tuning of your subclass. See technical details
sections.

• assign_result(instance) -> NULL
Abstract base method. Implement to specify how the final configuration is selected. See
technical details sections.

Technical Details and Subclasses

A subclass is implemented in the following way:

• Inherit from Tuner

• Specify the private abstract method $tune_internal() and use it to call into your optimizer.

14 Tuner

• You need to call instance$eval_batch() to evaluate design points.

• The batch evaluation is requested at the TuningInstance object instance, so each batch is
possibly executed in parallel via mlr3::benchmark(), and all evaluations are stored inside of
instance$bmr.

• Before and after the batch evaluation, the Terminator is checked, and if it is positive, an ex-
ception of class "terminated_error" is generated. In the later case the current batch of
evaluations is still stored in instance, but the numeric scores are not sent back to the han-
dling optimizer as it has lost execution control.

• After such an exception was caught we select the best configuration from instance$bmr and
return it.

• Note that therefore more points than specified by the Terminator may be evaluated, as the
Terminator is only checked before and after a batch evaluation, and not in-between evaluation
in a batch. How many more depends on the setting of the batch size.

• Overwrite the private super-method assign_result if you want to decide yourself how to
estimate the final configuration in the instance and its estimated performance. The default
behavior is: We pick the best resample-experiment, regarding the first measure, then assign its
configuration and aggregated performance to the instance.

See Also

Other Tuner: TunerDesignPoints, TunerGenSA, TunerGridSearch, TunerRandomSearch, mlr_tuners

Examples

library(mlr3)
library(paradox)
param_set = ParamSet$new(list(

ParamDbl$new("cp", lower = 0.001, upper = 0.1)
))
terminator = term("evals", n_evals = 3)
instance = TuningInstance$new(

task = tsk("iris"),
learner = lrn("classif.rpart"),
resampling = rsmp("holdout"),
measures = msr("classif.ce"),
param_set = param_set,
terminator = terminator

)
tt = tnr("random_search") # swap this line to use a different Tuner
tt$tune(instance) # modifies the instance by reference
instance$result # returns best configuration and best performance
instance$archive() # allows access of data.table / benchmark result of full path of all evaluations

TunerDesignPoints 15

TunerDesignPoints TunerDesignPoints

Description

Subclass for tuning w.r.t. fixed design points.

We simply search over a set of points fully specified by the user. The points in the design are
evaluated in order as given.

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches imply a
more fine-grained checking of termination criteria.

Format

R6::R6Class object inheriting from Tuner.

Construction

TunerDesignPoints$new()
tnr("design_points")

Parameters

• batch_size :: integer(1)
Maximum number of configurations to try in a batch.

See Also

Other Tuner: TunerGenSA, TunerGridSearch, TunerRandomSearch, Tuner, mlr_tuners

Examples

see ?Tuner

TunerGenSA TunerGenSA

Description

Subclass for generalized simulated annealing tuning calling GenSA::GenSA() from package GenSA.

Format

R6::R6Class object inheriting from Tuner.

https://CRAN.R-project.org/package=GenSA

16 TunerGridSearch

Construction

TunerGenSA$new()
tnr("gensa")

Parameters

This tuner currently supports the following hyperparameters:

• smooth :: logical(1)

• temperature :: numeric(1)

• acceptance.param :: numeric(1)

• verbose :: logical(1)

• trace.mat :: logical(1)

For the meaning of the control parameters, see GenSA::GenSA(). Note that we have removed all
control parameters which refer to the termination of the algorithm and where our terminators allow
to obtain the same behavior.

See Also

Other Tuner: TunerDesignPoints, TunerGridSearch, TunerRandomSearch, Tuner, mlr_tuners

Examples

see ?Tuner

TunerGridSearch TunerGridSearch

Description

Subclass for grid search tuning.

The grid is constructed as a Cartesian product over discretized values per parameter, see paradox::generate_design_grid().
The points of the grid are evaluated in a random order.

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches imply a
more fine-grained checking of termination criteria.

Format

R6::R6Class object inheriting from Tuner.

TunerRandomSearch 17

Construction

TunerGridSearch$new()
tnr("grid_search")

Parameters

• resolution :: integer(1)
Resolution of the grid, see paradox::generate_design_grid().

• param_resolutions :: named integer()
Resolution per parameter, named by parameter ID, see paradox::generate_design_grid().

• batch_size :: integer(1)
Maximum number of configurations to try in a batch.

See Also

Other Tuner: TunerDesignPoints, TunerGenSA, TunerRandomSearch, Tuner, mlr_tuners

Examples

see ?Tuner

TunerRandomSearch TunerRandomSearch

Description

Subclass for random search tuning.

The random points are sampled by paradox::generate_design_random().

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches imply a
more fine-grained checking of termination criteria.

Format

R6::R6Class object inheriting from Tuner.

Construction

TunerRandomSearch$new(batch_size = 1L)
tnr("random_search")

Parameters

• batch_size :: integer(1)
Maximum number of configurations to try in a batch.

18 TuningInstance

See Also

Other Tuner: TunerDesignPoints, TunerGenSA, TunerGridSearch, Tuner, mlr_tuners

Examples

see ?Tuner

TuningInstance TuningInstance Class

Description

Specifies a general tuning scenario, including performance evaluator and archive for Tuners to act
upon. This class encodes the black box objective function, that a Tuner has to optimize. It allows the
basic operations of querying the objective at design points ($eval_batch()), storing the evaluations
in an internal archive and querying the archive ($archive()).

Evaluations of hyperparameter configurations are performed in batches by calling mlr3::benchmark()
internally. Before and after a batch is evaluated, the Terminator is queried for the remaining bud-
get. If the available budget is exhausted, an exception is raised, and no further evaluations can be
performed from this point on.

A list of measures can be passed to the instance, and they will always be all evaluated. However,
single-criteria tuners optimize only the first measure.

The tuner is also supposed to store its final result, consisting of a selected hyperparameter configura-
tion and associated estimated performance values, by calling the method instance$assign_result.

Format

R6::R6Class object.

Construction

inst = TuningInstance$new(task, learner, resampling, measures,
param_set, terminator, bm_args = list())

This defines the resampled performance of a learner on a task, a feasibility region for the parameters
the tuner is supposed to optimize, and a termination criterion.

• task :: mlr3::Task.
• learner :: mlr3::Learner.
• resampling :: mlr3::Resampling

Note that the resampling is instantiated at the beginning so that all configurations are evaluated
on the same data splits.

• measures :: list of mlr3::Measure.
• param_set :: paradox::ParamSet.
• terminator :: Terminator.
• bm_args :: named list()

Further arguments for mlr3::benchmark().

TuningInstance 19

Fields

• task :: mlr3::Task; from construction.

• learner :: mlr3::Learner; from construction.

• resampling :: mlr3::Resampling; from construction.

• measures :: list of mlr3::Measure; from construction.

• param_set :: paradox::ParamSet; from construction.

• terminator :: Terminator; from construction.

• bmr :: mlr3::BenchmarkResult
A benchmark result, container object for all performed mlr3::ResampleResults when evaluat-
ing hyperparameter configurations.

• n_evals :: integer(1)
Number of configuration evaluations stored in the container.

• start_time :: POSIXct(1)
Time the tuning was started. This is set in the beginning of $tune() of Tuner.

• result :: named list()
Result of the tuning, i.e., the optimal configuration and its estimated performance:

– "perf": Named vector of estimated performance values of the best configuration found.
– "tune_x": Named list of optimal hyperparameter settings, without potential trafo func-

tion applied.
– "params": Named list of optimal hyperparameter settings, similar to tune_x, but with

potential trafo function applied. Also, if the learner had some extra parameters statically
set before tuning, these are included here.

Methods

• eval_batch(dt)
data.table::data.table() -> named list()
Evaluates all hyperparameter configurations in dt through resampling, where each configura-
tion is a row, and columns are scalar parameters. Updates the internal BenchmarkResult $bmr
by reference, and returns a named list with the following elements:

– "batch_nr": Number of the new batch. This number is calculated in an auto-increment
fashion and also stored inside the BenchmarkResult as column batch_nr

– "uhashes": unique hashes of the added ResampleResults.
– "perf": A data.table::data.table() of evaluated performances for each row of the
dt. Has the same number of rows as dt, and the same number of columns as length
of measures. Columns are named with measure-IDs. A cell entry is the (aggregated)
performance of that configuration for that measure.

Before and after each batch-evaluation, the Terminator is checked, and if it is positive, an
exception of class terminated_error is raised. This function should be internally called by
the tuner.

• tuner_objective(x)
numeric() -> numeric(1)
Evaluates a hyperparameter configuration (untransformed) of only numeric values, and returns

20 TuningInstance

a scalar objective value, where the return value is negated if the measure is maximized. Inter-
nally, $eval_batch() is called with a single row. This function serves as a objective function
for tuners of numeric spaces - which should always be minimized.

• best(measure = NULL)
(mlr3::Measure, character(1)) -> mlr3::ResampleResult
Queries the mlr3::BenchmarkResult for the best mlr3::ResampleResult according to measure
(default is the first measure in $measures). In case of ties, one of the tied values is selected
randomly.

• archive(unnest = "no")
character(1) -> data.table::data.table()
Returns a table of contained resample results, similar to the one returned by mlr3::benchmark()’s
$aggregate() method. Some interesting columns of this table are:

– All evaluated measures are included as numeric columns, named with their measure ID.
– tune_x: A list column that contains the parameter settings the tuner evaluated, without

potential trafo applied.
– params: A list column that contains the parameter settings that were actually used in

the learner. Similar to tune_x, but with potential trafo applied. Also, if the learner
had some extra parameters statically set before tuning, these are included here. unnest
can have the values "no", "tune_x" or "params". If it is not set to "no", settings of
the respective list-column are stored in separate columns instead of the list-column, and
dependent, inactive parameters are encoded with NA.

• assign_result(tune_x,perf)
(list, numeric) -> NULL
The tuner writes the best found list of settings and estimated performance values here. For
internal use.

– tune_x: Must be a named list of settings only of parameters from param_set and be
feasible, untransformed.

– perf : Must be a named numeric vector of performance measures, named with perfor-
mance IDs, regarding all elements in measures.

Examples

library(data.table)
library(paradox)
library(mlr3)

Objects required to define the performance evaluator:
task = tsk("iris")
learner = lrn("classif.rpart")
resampling = rsmp("holdout")
measures = msr("classif.ce")
param_set = ParamSet$new(list(

ParamDbl$new("cp", lower = 0.001, upper = 0.1),
ParamInt$new("minsplit", lower = 1, upper = 10))

)

terminator = term("evals", n_evals = 5)
inst = TuningInstance$new(

TuningInstance 21

task = task,
learner = learner,
resampling = resampling,
measures = measures,
param_set = param_set,
terminator = terminator

)

first 4 points as cross product
design = CJ(cp = c(0.05, 0.01), minsplit = c(5, 3))
inst$eval_batch(design)
inst$archive()

try more points, catch the raised terminated message
tryCatch(

inst$eval_batch(data.table(cp = 0.01, minsplit = 7)),
terminated_error = function(e) message(as.character(e))

)

try another point although the budget is now exhausted
-> no extra evaluations
tryCatch(

inst$eval_batch(data.table(cp = 0.01, minsplit = 9)),
terminated_error = function(e) message(as.character(e))

)

inst$archive()

Error handling
get a learner which breaks with 50% probability
set encapsulation + fallback
learner = lrn("classif.debug", error_train = 0.5)
learner$encapsulate = c(train = "evaluate", predict = "evaluate")
learner$fallback = lrn("classif.featureless")

param_set = ParamSet$new(list(
ParamDbl$new("x", lower = 0, upper = 1)

))

inst = TuningInstance$new(
task = tsk("wine"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
param_set = param_set,
terminator = term("evals", n_evals = 5)

)

tryCatch(
inst$eval_batch(data.table(x = 1:5 / 5)),
terminated_error = function(e) message(as.character(e))

)

22 TuningInstance

archive = inst$archive()

column errors: multiple errors recorded
print(archive)

Index

∗Topic datasets
AutoTuner, 3
mlr_terminators, 4
mlr_tuners, 5
Terminator, 6
TerminatorClockTime, 7
TerminatorCombo, 7
TerminatorEvals, 8
TerminatorModelTime, 9
TerminatorNone, 10
TerminatorPerfReached, 10
TerminatorStagnation, 11
Tuner, 12
TunerDesignPoints, 15
TunerGenSA, 15
TunerGridSearch, 16
TunerRandomSearch, 17
TuningInstance, 18

AutoTuner, 3, 3

BenchmarkResult, 19

data.table::data.table(), 4, 19, 20

GenSA::GenSA(), 15, 16

Learner, 3, 4

mlr3::benchmark(), 3, 14, 18, 20
mlr3::BenchmarkResult, 19, 20
mlr3::Learner, 3, 18, 19
mlr3::Measure, 3, 18–20
mlr3::mlr_sugar, 12
mlr3::resample(), 3
mlr3::ResampleResult, 19, 20
mlr3::Resampling, 3, 18, 19
mlr3::Task, 18, 19
mlr3misc::Dictionary, 4, 5, 12
mlr3misc::dictionary_sugar(), 12
mlr3tuning (mlr3tuning-package), 2

mlr3tuning-package, 2
mlr_reflections$tuner_properties, 13
mlr_terminators, 4, 6–12
mlr_terminators_clock_time

(TerminatorClockTime), 7
mlr_terminators_combo

(TerminatorCombo), 7
mlr_terminators_evals

(TerminatorEvals), 8
mlr_terminators_model_time

(TerminatorModelTime), 9
mlr_terminators_none (TerminatorNone),

10
mlr_terminators_perf_reached

(TerminatorPerfReached), 10
mlr_terminators_stagnation

(TerminatorStagnation), 11
mlr_tuners, 5, 12, 14–18
mlr_tuners_design_points

(TunerDesignPoints), 15
mlr_tuners_gensa (TunerGenSA), 15
mlr_tuners_grid_search

(TunerGridSearch), 16
mlr_tuners_random_search

(TunerRandomSearch), 17

paradox::generate_design_grid(), 16, 17
paradox::generate_design_random(), 17
paradox::Param, 13
paradox::ParamSet, 3, 6, 12, 13, 18, 19

R6::R6Class, 3–11, 13, 15–18
requireNamespace(), 13
ResampleResult, 19

Sys.time(), 7

term (tnr), 12
term(), 4, 5
Terminator, 3–6, 6, 7–12, 14, 18, 19

23

24 INDEX

TerminatorClockTime, 5, 6, 7, 8–11
TerminatorCombo, 5–7, 7, 9–11
TerminatorEvals, 5–8, 8, 9–11
TerminatorModelTime, 5–9, 9, 10, 11
TerminatorNone, 5–9, 10, 11
TerminatorPerfReached, 5–10, 10, 11
TerminatorStagnation, 5–11, 11
tnr, 12
tnr(), 5
Tuner, 3, 5, 12, 12, 15–19
TunerDesignPoints, 5, 14, 15, 16–18
TunerGenSA, 5, 14, 15, 15, 17, 18
TunerGridSearch, 5, 14–16, 16, 18
TunerRandomSearch, 5, 14–17, 17
TuningInstance, 3, 4, 6, 12–14, 18
Tuninginstance, 12

	mlr3tuning-package
	AutoTuner
	mlr_terminators
	mlr_tuners
	Terminator
	TerminatorClockTime
	TerminatorCombo
	TerminatorEvals
	TerminatorModelTime
	TerminatorNone
	TerminatorPerfReached
	TerminatorStagnation
	tnr
	Tuner
	TunerDesignPoints
	TunerGenSA
	TunerGridSearch
	TunerRandomSearch
	TuningInstance
	Index

