CRAN Package Check Results for Package RBesT

Last updated on 2019-11-26 00:52:05 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.5-4 141.89 299.91 441.80 ERROR
r-devel-linux-x86_64-debian-gcc 1.5-4 123.70 213.16 336.86 ERROR
r-devel-linux-x86_64-fedora-clang 1.5-4 551.76 NOTE
r-devel-linux-x86_64-fedora-gcc 1.5-4 590.76 NOTE
r-devel-windows-ix86+x86_64 1.5-4 311.00 504.00 815.00 NOTE
r-devel-windows-ix86+x86_64-gcc8 1.5-4 222.00 388.00 610.00 NOTE
r-patched-linux-x86_64 1.5-4 123.28 330.12 453.40 NOTE
r-patched-solaris-x86 1.5-4 614.00 NOTE
r-release-linux-x86_64 1.5-4 130.74 331.16 461.90 NOTE
r-release-windows-ix86+x86_64 1.5-4 278.00 513.00 791.00 NOTE
r-release-osx-x86_64 1.5-4 NOTE
r-oldrel-windows-ix86+x86_64 1.5-4 207.00 357.00 564.00 NOTE
r-oldrel-osx-x86_64 1.5-4 NOTE

Check Details

Version: 1.5-4
Check: for GNU extensions in Makefiles
Result: NOTE
    GNU make is a SystemRequirements.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-devel-windows-ix86+x86_64-gcc8, r-patched-linux-x86_64, r-patched-solaris-x86, r-release-linux-x86_64, r-release-windows-ix86+x86_64, r-release-osx-x86_64, r-oldrel-windows-ix86+x86_64, r-oldrel-osx-x86_64

Version: 1.5-4
Check: examples
Result: ERROR
    Running examples in 'RBesT-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: gMAP
    > ### Title: Meta-Analytic-Predictive Analysis for Generalized Linear Models
    > ### Aliases: gMAP print.gMAP fitted.gMAP coef.gMAP as.matrix.gMAP
    > ### summary.gMAP
    >
    > ### ** Examples
    >
    > ## Setting up dummy sampling for fast execution of example
    > ## Please use 4 chains and 20x more warmup & iter in practice
    > .user_mc_options <- options(RBesT.MC.warmup=50, RBesT.MC.iter=100,
    + RBesT.MC.chains=2, RBesT.MC.thin=1)
    >
    > # Binary data example 1
    >
    > # Mean response rate is ~0.25. For binary endpoints
    > # a conservative choice for tau is a HalfNormal(0,1) as long as
    > # the mean response rate is in the range of 0.2 to 0.8. For
    > # very small or large rates consider the n_infinity approach
    > # illustrated below.
    > # for exact reproducible results, the seed must be set
    > set.seed(34563)
    > map_AS <- gMAP(cbind(r, n-r) ~ 1 | study,
    + family=binomial,
    + data=AS,
    + tau.dist="HalfNormal", tau.prior=1,
    + beta.prior=2)
    Assuming default prior location for beta: 0
    Warning: The largest R-hat is 1.11, indicating chains have not mixed.
    Running the chains for more iterations may help. See
    http://mc-stan.org/misc/warnings.html#r-hat
    Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
    Running the chains for more iterations may help. See
    http://mc-stan.org/misc/warnings.html#bulk-ess
    Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
    Running the chains for more iterations may help. See
    http://mc-stan.org/misc/warnings.html#tail-ess
    Warning in gMAP(cbind(r, n - r) ~ 1 | study, family = binomial, data = AS, :
     Maximal Rhat > 1.1. Consider increasing RBesT.MC.warmup MCMC parameter.
    Final MCMC sample equivalent to less than 1000 independent draws.
    Please consider increasing the MCMC simulation size.
    > print(map_AS)
    Generalized Meta Analytic Predictive Prior Analysis
    
    Call: gMAP(formula = cbind(r, n - r) ~ 1 | study, family = binomial,
     data = AS, tau.dist = "HalfNormal", tau.prior = 1, beta.prior = 2)
    
    Exchangeability tau strata: 1
    Prediction tau stratum : 1
    Maximal Rhat : 1.11
    
    Between-trial heterogeneity of tau prediction stratum
     mean sd 2.5% 50% 97.5%
    0.370 0.163 0.110 0.352 0.764
    
    MAP Prior MCMC sample
     mean sd 2.5% 50% 97.5%
    0.2580 0.0817 0.1230 0.2510 0.4460
    >
    > # obtain numerical summaries
    > map_sum <- summary(map_AS)
    > print(map_sum)
    Heterogeneity parameter tau per stratum:
     mean sd 2.5% 50% 97.5%
    tau[1] 0.37 0.163 0.11 0.352 0.764
    
    Regression coefficients:
     mean sd 2.5% 50% 97.5%
    (Intercept) -1.12 0.178 -1.47 -1.11 -0.767
    
    Mean estimate MCMC sample:
     mean sd 2.5% 50% 97.5%
    theta_resp 0.248 0.033 0.187 0.247 0.317
    
    MAP Prior MCMC sample:
     mean sd 2.5% 50% 97.5%
    theta_resp_pred 0.258 0.0817 0.123 0.251 0.446
    > names(map_sum)
    [1] "tau" "beta" "theta.pred" "theta"
    > # [1] "tau" "beta" "theta.pred" "theta"
    > map_sum$theta.pred
     mean sd 2.5% 50% 97.5%
    theta_resp_pred 0.2576768 0.08166927 0.1232554 0.2508299 0.4464658
    >
    >
    > # obtain shrinkage estimates
    > fitted(map_AS)
     mean sd 2.5% 50% 97.5%
    Study 1 0.2245230 0.03009877 0.16467408 0.2255518 0.2698386
    Study 2 0.2600974 0.05160094 0.17318985 0.2610201 0.3745415
    Study 3 0.3157218 0.06628311 0.21188389 0.3041774 0.4656744
    Study 4 0.2440305 0.04812868 0.15154707 0.2442546 0.3333963
    Study 5 0.2681039 0.03179363 0.21285005 0.2633981 0.3412085
    Study 6 0.2670423 0.05109495 0.19112391 0.2609730 0.3660353
    Study 7 0.1704818 0.04185255 0.08821842 0.1727647 0.2466163
    Study 8 0.2649455 0.04246509 0.20001270 0.2574109 0.3462487
    >
    > # regression coefficients
    > coef(map_AS)
     mean sd 2.5% 50% 97.5%
    (Intercept) -1.11748 0.1782488 -1.468582 -1.113787 -0.7667301
    >
    > # finally fit MAP prior with parametric mixture
    > map_mix <- mixfit(map_AS, Nc=2)
    > plot(map_mix)$mix
    Error in parameter_names.array(x) : is_3d_array(x) is not TRUE
    Calls: plot ... parameter_names -> parameter_names.array -> stopifnot
    Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 1.5-4
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
     ...
    --- re-building 'PoS_codata.Rmd' using rmarkdown
    Quitting from lines 358-375 (PoS_codata.Rmd)
    Error: processing vignette 'PoS_codata.Rmd' failed with diagnostics:
    is_3d_array(x) is not TRUE
    --- failed re-building 'PoS_codata.Rmd'
    
    --- re-building 'PoS_interim.Rmd' using rmarkdown
    --- finished re-building 'PoS_interim.Rmd'
    
    --- re-building 'customizing_plots.Rmd' using rmarkdown
    Loading required package: Rcpp
    This is RBesT version 1.5.4
    This is bayesplot version 1.7.0
    - Online documentation and vignettes at mc-stan.org/bayesplot
    - bayesplot theme set to bayesplot::theme_default()
     * Does _not_ affect other ggplot2 plots
     * See ?bayesplot_theme_set for details on theme setting
    Warning: The largest R-hat is 1.14, indicating chains have not mixed.
    Running the chains for more iterations may help. See
    http://mc-stan.org/misc/warnings.html#r-hat
    Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
    Running the chains for more iterations may help. See
    http://mc-stan.org/misc/warnings.html#bulk-ess
    Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
    Running the chains for more iterations may help. See
    http://mc-stan.org/misc/warnings.html#tail-ess
    Warning in gMAP(cbind(y, y.se) ~ 1 | study, family = gaussian, data = transform(crohn, :
     Maximal Rhat > 1.1. Consider increasing RBesT.MC.warmup MCMC parameter.
    Final MCMC sample equivalent to less than 1000 independent draws.
    Please consider increasing the MCMC simulation size.
    --- finished re-building 'customizing_plots.Rmd'
    
    --- re-building 'introduction.Rmd' using rmarkdown
    Quitting from lines 136-139 (introduction.Rmd)
    Error: processing vignette 'introduction.Rmd' failed with diagnostics:
    is_3d_array(x) is not TRUE
    --- failed re-building 'introduction.Rmd'
    
    --- re-building 'introduction_normal.Rmd' using rmarkdown
    Quitting from lines 119-123 (introduction_normal.Rmd)
    Error: processing vignette 'introduction_normal.Rmd' failed with diagnostics:
    is_3d_array(x) is not TRUE
    --- failed re-building 'introduction_normal.Rmd'
    
    --- re-building 'robustMAP.Rmd' using rmarkdown
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Warning in calc_loc(mix, "mode") :
     Detected multiple modes.
    The ESS is determined for the largest mode, but ESS concept is ill-defined for multi-modal distributions.
    Quitting from lines 290-313 (robustMAP.Rmd)
    Error: processing vignette 'robustMAP.Rmd' failed with diagnostics:
    is_3d_array(x) is not TRUE
    --- failed re-building 'robustMAP.Rmd'
    
    --- re-building 'variances_MAP.Rmd' using rmarkdown
    Quitting from lines 142-153 (variances_MAP.Rmd)
    Error: processing vignette 'variances_MAP.Rmd' failed with diagnostics:
    is_3d_array(x) is not TRUE
    --- failed re-building 'variances_MAP.Rmd'
    
    SUMMARY: processing the following files failed:
     'PoS_codata.Rmd' 'introduction.Rmd' 'introduction_normal.Rmd'
     'robustMAP.Rmd' 'variances_MAP.Rmd'
    
    Error: Vignette re-building failed.
    Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 1.5-4
Check: installed package size
Result: NOTE
     installed size is 32.0Mb
     sub-directories of 1Mb or more:
     doc 2.7Mb
     libs 28.2Mb
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-windows-ix86+x86_64, r-devel-windows-ix86+x86_64-gcc8, r-patched-solaris-x86, r-release-windows-ix86+x86_64, r-release-osx-x86_64, r-oldrel-windows-ix86+x86_64, r-oldrel-osx-x86_64