CRAN Package Check Results for Package lqmm

Last updated on 2019-11-26 00:51:56 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.5.4 7.84 43.15 50.99 ERROR
r-devel-linux-x86_64-debian-gcc 1.5.4 5.84 33.97 39.81 ERROR
r-devel-linux-x86_64-fedora-clang 1.5.4 63.52 OK
r-devel-linux-x86_64-fedora-gcc 1.5.4 61.68 OK
r-devel-windows-ix86+x86_64 1.5.4 24.00 94.00 118.00 OK
r-devel-windows-ix86+x86_64-gcc8 1.5.4 22.00 73.00 95.00 OK
r-patched-linux-x86_64 1.5.4 6.66 46.40 53.06 OK
r-patched-solaris-x86 1.5.4 81.20 OK
r-release-linux-x86_64 1.5.4 7.13 46.59 53.72 OK
r-release-windows-ix86+x86_64 1.5.4 19.00 70.00 89.00 OK
r-release-osx-x86_64 1.5.4 OK
r-oldrel-windows-ix86+x86_64 1.5.4 11.00 90.00 101.00 OK
r-oldrel-osx-x86_64 1.5.4 OK

Check Details

Version: 1.5.4
Check: examples
Result: ERROR
    Running examples in 'lqmm-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: lqm.counts
    > ### Title: Quantile Regression for Counts
    > ### Aliases: lqm.counts
    > ### Keywords: quantiles for counts
    >
    > ### ** Examples
    >
    >
    > n <- 100
    > x <- runif(n)
    > test <- data.frame(x = x, y = rpois(n, 2*x))
    > lqm.counts(y ~ x, data = test, M = 50)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    lqmm
     --- call from context ---
    lqm.counts(y ~ x, data = test, M = 50)
     --- call from argument ---
    if (class(tmpInv) != "try-error") {
     d[, , i] <- tmpInv
    } else {
     sel[i] <- FALSE
    }
     --- R stacktrace ---
    where 1: lqm.counts(y ~ x, data = test, M = 50)
    
     --- value of length: 2 type: logical ---
    [1] TRUE TRUE
     --- function from context ---
    function (formula, data, weights = NULL, offset = NULL, contrasts = NULL,
     tau = 0.5, M = 50, zeta = 1e-05, B = 0.999, cn = NULL, alpha = 0.05,
     control = list())
    {
     nq <- length(tau)
     if (nq > 1)
     stop("One quantile at a time")
     call <- match.call()
     mf <- match.call(expand.dots = FALSE)
     m <- match(c("formula", "data", "weights"), names(mf), 0L)
     mf <- mf[c(1L, m)]
     mf$drop.unused.levels <- TRUE
     mf[[1L]] <- as.name("model.frame")
     mf <- eval(mf, parent.frame())
     mt <- attr(mf, "terms")
     y <- model.response(mf, "numeric")
     w <- as.vector(model.weights(mf))
     if (!is.null(w) && !is.numeric(w))
     stop("'weights' must be a numeric vector")
     if (is.null(w))
     w <- rep(1, length(y))
     x <- model.matrix(mt, mf, contrasts)
     p <- ncol(x)
     n <- nrow(x)
     term.labels <- colnames(x)
     if (is.null(offset))
     offset <- rep(0, n)
     if (is.null(names(control)))
     control <- lqmControl()
     else {
     control_default <- lqmControl()
     control_names <- intersect(names(control), names(control_default))
     control_default[control_names] <- control[control_names]
     control <- control_default
     }
     if (is.null(control$loop_step))
     control$loop_step <- sd(as.numeric(y))
     if (control$beta > 1 || control$beta < 0)
     stop("Beta must be a decreasing factor in (0,1)")
     if (control$gamma < 1)
     stop("Beta must be a nondecreasing factor >= 1")
     if (p == 1)
     control$loop_tol_ll <- 0.005
     theta_0 <- glm.fit(x = as.matrix(x), y = y, weights = w,
     offset = offset, family = poisson())$coefficients
     Z <- replicate(M, addnoise(y, centered = FALSE, B = B))
     TZ <- apply(Z, 2, function(x, off, tau, zeta) log(ifelse((x -
     tau) > zeta, x - tau, zeta)) - off, off = offset, tau = tau,
     zeta = zeta)
     fit <- apply(TZ, 2, function(y, x, weights, tau, control,
     theta) lqm.fit.gs(theta = theta, x = x, y = y, weights = weights,
     tau = tau, control = control), x = x, weights = w, tau = tau,
     control = control, theta = theta_0)
     yhat <- sapply(fit, function(obj, x) x %*% obj$theta, x = x)
     yhat <- as.matrix(yhat)
     eta <- sweep(yhat, 1, offset, "+")
     zhat <- tau + exp(eta)
     Fvec <- Vectorize(F.lqm)
     if (is.null(cn))
     cn <- 0.5 * log(log(n))/sqrt(n)
     F <- apply(zhat, 2, Fvec, cn = cn)
     Fp <- apply(zhat + 1, 2, Fvec, cn = cn)
     multiplier <- (tau - (TZ <= yhat))^2
     a <- array(NA, dim = c(p, p, M))
     for (i in 1:M) a[, , i] <- t(x * multiplier[, i]) %*% x/n
     multiplier <- tau^2 + (1 - 2 * tau) * (y <= (zhat - 1)) +
     ((zhat - y) * (zhat - 1 < y & y <= zhat)) * (zhat - y -
     2 * tau)
     b <- array(NA, dim = c(p, p, M))
     for (i in 1:M) b[, , i] <- t(x * multiplier[, i]) %*% x/n
     multiplier <- exp(eta) * (F <= Z & Z < Fp)
     d <- array(NA, dim = c(p, p, M))
     sel <- rep(TRUE, M)
     for (i in 1:M) {
     tmpInv <- try(solve(t(x * multiplier[, i]) %*% x/n),
     silent = TRUE)
     if (class(tmpInv) != "try-error") {
     d[, , i] <- tmpInv
     }
     else {
     sel[i] <- FALSE
     }
     }
     dad <- 0
     dbd <- 0
     for (i in (1:M)[sel]) {
     dad <- dad + d[, , i] %*% a[, , i] %*% d[, , i]
     dbd <- dbd + d[, , i] %*% b[, , i] %*% d[, , i]
     }
     m.n <- sum(sel)
     if (m.n != 0) {
     V <- dad/(m.n^2) + (1 - 1/m.n) * dbd * 1/m.n
     V <- V/n
     stds <- sqrt(diag(V))
     }
     else {
     stds <- NA
     warning("Standard error not available")
     }
     est <- sapply(fit, function(x) x$theta)
     est <- if (p == 1)
     mean(est)
     else rowMeans(est)
     qfit <- if (p == 1) {
     tau + exp(mean(eta[1, ]))
     }
     else {
     tau + exp(rowMeans(eta))
     }
     lower <- est + qt(alpha/2, n - p) * stds
     upper <- est + qt(1 - alpha/2, n - p) * stds
     tP <- 2 * pt(-abs(est/stds), n - p)
     ans <- cbind(est, stds, lower, upper, tP)
     colnames(ans) <- c("Value", "Std. Error", "lower bound",
     "upper bound", "Pr(>|t|)")
     rownames(ans) <- names(est) <- term.labels
     fit <- list()
     fit$call <- call
     fit$na.action <- attr(mf, "na.action")
     fit$contrasts <- attr(x, "contrasts")
     fit$term.labels <- term.labels
     fit$terms <- mt
     fit$theta <- est
     fit$tau <- tau
     fit$nobs <- n
     fit$M <- M
     fit$Mn <- m.n
     fit$rdf <- n - p
     fit$x <- x
     fit$y <- y
     fit$fitted <- qfit
     fit$offset <- offset
     fit$Cov <- V
     fit$tTable <- ans
     fit$levels <- .getXlevels(mt, mf)
     fit$InitialPar <- list(theta = theta_0)
     fit$control <- control
     class(fit) <- "lqm.counts"
     return(fit)
    }
    <bytecode: 0x36fb358>
    <environment: namespace:lqmm>
     --- function search by body ---
    Function lqm.counts in namespace lqmm has this body.
     ----------- END OF FAILURE REPORT --------------
    Fatal error: the condition has length > 1
Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.5.4
Check: examples
Result: ERROR
    Running examples in ‘lqmm-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: lqm.counts
    > ### Title: Quantile Regression for Counts
    > ### Aliases: lqm.counts
    > ### Keywords: quantiles for counts
    >
    > ### ** Examples
    >
    >
    > n <- 100
    > x <- runif(n)
    > test <- data.frame(x = x, y = rpois(n, 2*x))
    > lqm.counts(y ~ x, data = test, M = 50)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    lqmm
     --- call from context ---
    lqm.counts(y ~ x, data = test, M = 50)
     --- call from argument ---
    if (class(tmpInv) != "try-error") {
     d[, , i] <- tmpInv
    } else {
     sel[i] <- FALSE
    }
     --- R stacktrace ---
    where 1: lqm.counts(y ~ x, data = test, M = 50)
    
     --- value of length: 2 type: logical ---
    [1] TRUE TRUE
     --- function from context ---
    function (formula, data, weights = NULL, offset = NULL, contrasts = NULL,
     tau = 0.5, M = 50, zeta = 1e-05, B = 0.999, cn = NULL, alpha = 0.05,
     control = list())
    {
     nq <- length(tau)
     if (nq > 1)
     stop("One quantile at a time")
     call <- match.call()
     mf <- match.call(expand.dots = FALSE)
     m <- match(c("formula", "data", "weights"), names(mf), 0L)
     mf <- mf[c(1L, m)]
     mf$drop.unused.levels <- TRUE
     mf[[1L]] <- as.name("model.frame")
     mf <- eval(mf, parent.frame())
     mt <- attr(mf, "terms")
     y <- model.response(mf, "numeric")
     w <- as.vector(model.weights(mf))
     if (!is.null(w) && !is.numeric(w))
     stop("'weights' must be a numeric vector")
     if (is.null(w))
     w <- rep(1, length(y))
     x <- model.matrix(mt, mf, contrasts)
     p <- ncol(x)
     n <- nrow(x)
     term.labels <- colnames(x)
     if (is.null(offset))
     offset <- rep(0, n)
     if (is.null(names(control)))
     control <- lqmControl()
     else {
     control_default <- lqmControl()
     control_names <- intersect(names(control), names(control_default))
     control_default[control_names] <- control[control_names]
     control <- control_default
     }
     if (is.null(control$loop_step))
     control$loop_step <- sd(as.numeric(y))
     if (control$beta > 1 || control$beta < 0)
     stop("Beta must be a decreasing factor in (0,1)")
     if (control$gamma < 1)
     stop("Beta must be a nondecreasing factor >= 1")
     if (p == 1)
     control$loop_tol_ll <- 0.005
     theta_0 <- glm.fit(x = as.matrix(x), y = y, weights = w,
     offset = offset, family = poisson())$coefficients
     Z <- replicate(M, addnoise(y, centered = FALSE, B = B))
     TZ <- apply(Z, 2, function(x, off, tau, zeta) log(ifelse((x -
     tau) > zeta, x - tau, zeta)) - off, off = offset, tau = tau,
     zeta = zeta)
     fit <- apply(TZ, 2, function(y, x, weights, tau, control,
     theta) lqm.fit.gs(theta = theta, x = x, y = y, weights = weights,
     tau = tau, control = control), x = x, weights = w, tau = tau,
     control = control, theta = theta_0)
     yhat <- sapply(fit, function(obj, x) x %*% obj$theta, x = x)
     yhat <- as.matrix(yhat)
     eta <- sweep(yhat, 1, offset, "+")
     zhat <- tau + exp(eta)
     Fvec <- Vectorize(F.lqm)
     if (is.null(cn))
     cn <- 0.5 * log(log(n))/sqrt(n)
     F <- apply(zhat, 2, Fvec, cn = cn)
     Fp <- apply(zhat + 1, 2, Fvec, cn = cn)
     multiplier <- (tau - (TZ <= yhat))^2
     a <- array(NA, dim = c(p, p, M))
     for (i in 1:M) a[, , i] <- t(x * multiplier[, i]) %*% x/n
     multiplier <- tau^2 + (1 - 2 * tau) * (y <= (zhat - 1)) +
     ((zhat - y) * (zhat - 1 < y & y <= zhat)) * (zhat - y -
     2 * tau)
     b <- array(NA, dim = c(p, p, M))
     for (i in 1:M) b[, , i] <- t(x * multiplier[, i]) %*% x/n
     multiplier <- exp(eta) * (F <= Z & Z < Fp)
     d <- array(NA, dim = c(p, p, M))
     sel <- rep(TRUE, M)
     for (i in 1:M) {
     tmpInv <- try(solve(t(x * multiplier[, i]) %*% x/n),
     silent = TRUE)
     if (class(tmpInv) != "try-error") {
     d[, , i] <- tmpInv
     }
     else {
     sel[i] <- FALSE
     }
     }
     dad <- 0
     dbd <- 0
     for (i in (1:M)[sel]) {
     dad <- dad + d[, , i] %*% a[, , i] %*% d[, , i]
     dbd <- dbd + d[, , i] %*% b[, , i] %*% d[, , i]
     }
     m.n <- sum(sel)
     if (m.n != 0) {
     V <- dad/(m.n^2) + (1 - 1/m.n) * dbd * 1/m.n
     V <- V/n
     stds <- sqrt(diag(V))
     }
     else {
     stds <- NA
     warning("Standard error not available")
     }
     est <- sapply(fit, function(x) x$theta)
     est <- if (p == 1)
     mean(est)
     else rowMeans(est)
     qfit <- if (p == 1) {
     tau + exp(mean(eta[1, ]))
     }
     else {
     tau + exp(rowMeans(eta))
     }
     lower <- est + qt(alpha/2, n - p) * stds
     upper <- est + qt(1 - alpha/2, n - p) * stds
     tP <- 2 * pt(-abs(est/stds), n - p)
     ans <- cbind(est, stds, lower, upper, tP)
     colnames(ans) <- c("Value", "Std. Error", "lower bound",
     "upper bound", "Pr(>|t|)")
     rownames(ans) <- names(est) <- term.labels
     fit <- list()
     fit$call <- call
     fit$na.action <- attr(mf, "na.action")
     fit$contrasts <- attr(x, "contrasts")
     fit$term.labels <- term.labels
     fit$terms <- mt
     fit$theta <- est
     fit$tau <- tau
     fit$nobs <- n
     fit$M <- M
     fit$Mn <- m.n
     fit$rdf <- n - p
     fit$x <- x
     fit$y <- y
     fit$fitted <- qfit
     fit$offset <- offset
     fit$Cov <- V
     fit$tTable <- ans
     fit$levels <- .getXlevels(mt, mf)
     fit$InitialPar <- list(theta = theta_0)
     fit$control <- control
     class(fit) <- "lqm.counts"
     return(fit)
    }
    <bytecode: 0x5595e73d8788>
    <environment: namespace:lqmm>
     --- function search by body ---
    Function lqm.counts in namespace lqmm has this body.
     ----------- END OF FAILURE REPORT --------------
    Fatal error: the condition has length > 1
Flavor: r-devel-linux-x86_64-debian-gcc