EGAnet: Exploratory Graph Analysis - A Framework for Estimating the
Number of Dimensions in Multivariate Data Using Network
Psychometrics
An implementation of the Exploratory Graph Analysis (EGA) framework for dimensionality assessment. EGA is part of a new area called network psychometrics that focuses on the estimation of undirected network models in psychological datasets. EGA estimates the number of dimensions or factors using graphical lasso or Triangulated Maximally Filtered Graph (TMFG) and a weighted network community analysis. A bootstrap method for verifying the stability of the estimation is also available. The fit of the structure suggested by EGA can be verified using confirmatory factor analysis and a direct way to convert the EGA structure to a confirmatory factor model is also implemented. Documentation and examples are available. Golino, H. F., & Epskamp, S. (2017) <doi:10.1371/journal.pone.0174035>. Golino, H. F., & Demetriou, A. (2017) <doi:10.1016/j.intell.2017.02.007> Golino, H., Shi, D., Garrido, L. E., Christensen, A. P., Nieto, M. D., Sadana, R., & Thiyagarajan, J. A. (2018) <doi:10.31234/osf.io/gzcre>. Christensen, A. P. & Golino, H.F. (2019) <doi:10.31234/osf.io/9deay>.
Version: |
0.8 |
Depends: |
R (≥ 3.5.0) |
Imports: |
qgraph (≥ 1.4.1), semPlot (≥ 1.0.1), igraph (≥ 1.0.1), lavaan (≥ 0.5-22), doParallel (≥ 1.0.10), foreach (≥ 1.4.3), NetworkToolbox (≥ 1.1.2), glasso (≥ 1.10), dplyr (≥ 0.7.8), Matrix (≥ 1.2), plotly (≥ 4.7.1), mvtnorm (≥ 1.0.8), corpcor (≥ 1.6.9), ggpubr (≥ 0.2), iterators (≥ 1.0.10), stats, plyr (≥ 1.8.4), matrixcalc (≥ 1.0-3), ggplot2 (≥ 3.1.0), pbapply, OpenMx (≥ 2.11.5) |
Suggests: |
knitr, rmarkdown |
Published: |
2019-09-25 |
Author: |
Hudson Golino [aut, cre],
Alexander Christensen [aut],
Robert Moulder [ctb] |
Maintainer: |
Hudson Golino <hfg9s at virginia.edu> |
License: |
GPL (≥ 3.0) |
NeedsCompilation: |
no |
Citation: |
EGAnet citation info |
Materials: |
NEWS |
CRAN checks: |
EGAnet results |
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=EGAnet
to link to this page.