Different post-selection inference strategies for kernel selection, as described in "kernelPSI: a Post-Selection Inference Framework for Nonlinear Variable Selection", Slim et al., Proceedings of Machine Learning Research, 2019, <http://proceedings.mlr.press/v97/slim19a/slim19a.pdf>. The strategies rest upon quadratic kernel association scores to measure the association between a given kernel and an outcome of interest. The inference step tests for the joint effect of the selected kernels on the outcome. A fast constrained sampling algorithm is proposed to derive empirical p-values for the test statistics.
Version: | 1.1.0 |
Depends: | R (≥ 3.5.0) |
Imports: | Rcpp (≥ 1.0.1), CompQuadForm, pracma, kernlab, lmtest |
LinkingTo: | Rcpp, RcppArmadillo |
Suggests: | bindata, knitr, rmarkdown, MASS, testthat |
Published: | 2019-09-08 |
Author: | Lotfi Slim [aut, cre], Clément Chatelain [ctb], Chloé-Agathe Azencott [ctb], Jean-Philippe Vert [ctb] |
Maintainer: | Lotfi Slim <lotfi.slim at mines-paristech.fr> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | http://proceedings.mlr.press/v97/slim19a.html |
NeedsCompilation: | yes |
Materials: | README NEWS |
CRAN checks: | kernelPSI results |
Reference manual: | kernelPSI.pdf |
Vignettes: |
kernelPSI: a Post-Selection Inference Framework for Nonlinear Variable Selection |
Package source: | kernelPSI_1.1.0.tar.gz |
Windows binaries: | r-devel: kernelPSI_1.1.0.zip, r-devel-gcc8: kernelPSI_1.1.0.zip, r-release: kernelPSI_1.1.0.zip, r-oldrel: kernelPSI_1.1.0.zip |
OS X binaries: | r-release: kernelPSI_1.1.0.tgz, r-oldrel: kernelPSI_1.1.0.tgz |
Old sources: | kernelPSI archive |
Please use the canonical form https://CRAN.R-project.org/package=kernelPSI to link to this page.