This algorithm provides a numerical solution to the problem of minimizing (or maximizing) a function. This is more efficient than the Gauss-Newton-like algorithm when starting from points very far from the final minimum (or maximum). A new convergence test is implemented (RDM) in addition to the usual stopping criterion : stopping rule is when the gradients are small enough in the parameters metric (GH-1G).
Version: | 2.0.1 |
Depends: | R (≥ 2.0.0) |
Imports: | doParallel, foreach |
Suggests: | microbenchmark |
Published: | 2019-09-20 |
Author: | Melanie Prague, Viviane Philipps, Cecile Proust-Lima, Boris Hejblum, Daniel Commenges, Amadou Diakite |
Maintainer: | Viviane Philipps <viviane.philipps at u-bordeaux.fr> |
BugReports: | http://github.com/VivianePhilipps/marqLevAlgParallel/issues |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2.0)] |
NeedsCompilation: | yes |
CRAN checks: | marqLevAlg results |
Reference manual: | marqLevAlg.pdf |
Package source: | marqLevAlg_2.0.1.tar.gz |
Windows binaries: | r-devel: marqLevAlg_2.0.1.zip, r-devel-gcc8: marqLevAlg_2.0.1.zip, r-release: marqLevAlg_2.0.1.zip, r-oldrel: marqLevAlg_2.0.1.zip |
OS X binaries: | r-release: marqLevAlg_2.0.1.tgz, r-oldrel: marqLevAlg_2.0.1.tgz |
Old sources: | marqLevAlg archive |
Please use the canonical form https://CRAN.R-project.org/package=marqLevAlg to link to this page.