ppls: Penalized Partial Least Squares

Contains linear and nonlinear regression methods based on Partial Least Squares and Penalization Techniques. Model parameters are selected via cross-validation, and confidence intervals ans tests for the regression coefficients can be conducted via jackknifing.

Version: 1.6-1.1
Depends: R (≥ 2.10), splines, MASS
Published: 2018-07-20
Author: Nicole Kraemer Anne-Laure Boulesteix
Maintainer: ORPHANED
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Citation: ppls citation info
Materials: ChangeLog
In views: ChemPhys, Multivariate
CRAN checks: ppls results


Reference manual: ppls.pdf
Package source: ppls_1.6-1.1.tar.gz
Windows binaries: r-devel: ppls_1.6-1.1.zip, r-devel-gcc8: ppls_1.6-1.1.zip, r-release: ppls_1.6-1.1.zip, r-oldrel: ppls_1.6-1.1.zip
OS X binaries: r-release: ppls_1.6-1.1.tgz, r-oldrel: ppls_1.6-1.1.tgz
Old sources: ppls archive

Reverse dependencies:

Reverse depends: parcor, SODC
Reverse imports: clustRcompaR
Reverse suggests: groc


Please use the canonical form https://CRAN.R-project.org/package=ppls to link to this page.