This package provides you access to DBnomics data series. DBnomics is an open-source project with the goal of aggregating the world’s economic data in one location, free of charge to the public. DBnomics covers hundreds of millions of series from international and national institutions (Eurostat, World Bank, IMF, …).
To use this package, you have to provide the codes of the provider, dataset and series you want. You can retrieve them directly on the website. You have access to the API through this link and the documentation is here.
DBnomics is hosted on its own gitlab platform. However, in order to install the package more easily, we created a mirror of this package on github.
To install rdbnomics
from CRAN:
To install rdbnomics
from github:
remotes::install_github("dbnomics/rdbnomics", build_vignettes = TRUE, force = TRUE)
library(rdbnomics)
After installation, a vignette is available to the user:
Fetch time series by ids
:
# Fetch one series from dataset 'Unemployment rate' (ZUTN) of AMECO provider:
df1 <- rdb(ids = 'AMECO/ZUTN/EA19.1.0.0.0.ZUTN')
# Fetch two series from dataset 'Unemployment rate' (ZUTN) of AMECO provider:
df2 <- rdb(ids = c('AMECO/ZUTN/EA19.1.0.0.0.ZUTN', 'AMECO/ZUTN/DNK.1.0.0.0.ZUTN'))
# Fetch two series from different datasets of different providers:
df3 <- rdb(ids = c('AMECO/ZUTN/EA19.1.0.0.0.ZUTN', 'IMF/CPI/A.AT.PCPIT_IX'))
In the event that you only use the argument ids
, you can drop it and run:
Fetch time series by mask
:
# Fetch one series from dataset 'Consumer Price Index' (CPI) of IMF:
df1 <- rdb('IMF', 'CPI', mask = 'M.DE.PCPIEC_WT')
# Fetch two series from dataset 'Consumer Price Index' (CPI) of IMF:
df2 <- rdb('IMF', 'CPI', mask = 'M.DE+FR.PCPIEC_WT')
# Fetch all series along one dimension from dataset 'Consumer Price Index' (CPI) of IMF:
df3 <- rdb('IMF', 'CPI', mask = 'M..PCPIEC_WT')
# Fetch series along multiple dimensions from dataset 'Consumer Price Index' (CPI) of IMF:
df4 <- rdb('IMF', 'CPI', mask = 'M..PCPIEC_IX+PCPIA_IX')
In the event that you only use the arguments provider_code
, dataset_code
and mask
, you can drop the name mask
and run:
Fetch time series by dimensions
:
# Fetch one value of one dimension from dataset 'Unemployment rate' (ZUTN) of AMECO provider:
df1 <- rdb('AMECO', 'ZUTN', dimensions = list(geo = "ea12"))
# or
df1 <- rdb('AMECO', 'ZUTN', dimensions = '{"geo": ["ea12"]}')
# Fetch two values of one dimension from dataset 'Unemployment rate' (ZUTN) of AMECO provider:
df2 <- rdb('AMECO', 'ZUTN', dimensions = list(geo = c("ea12", "dnk")))
# or
df2 <- rdb('AMECO', 'ZUTN', dimensions = '{"geo": ["ea12", "dnk"]}')
# Fetch several values of several dimensions from dataset 'Doing business' (DB) of World Bank:
df3 <- rdb('WB', 'DB', dimensions = list(country = c("DZ", "PE"), indicator = c("ENF.CONT.COEN.COST.ZS", "IC.REG.COST.PC.FE.ZS")))
# or
df3 <- rdb('WB', 'DB', dimensions = '{"country": ["DZ", "PE"], "indicator": ["ENF.CONT.COEN.COST.ZS", "IC.REG.COST.PC.FE.ZS"]}')
Fetch one series from the dataset ‘Doing Business’ of WB provider with the link:
df1 <- rdb_by_api_link('https://api.db.nomics.world/v22/series/WB/DB?dimensions=%7B%22country%22%3A%5B%22FR%22%2C%22IT%22%2C%22ES%22%5D%7D&q=IC.REG.PROC.FE.NO&observations=1&format=json&align_periods=1&offset=0&facets=0')
Could not resolve host
When using the functions rdb
or rdb_...
, you may come across the following error:
To get round this situation, you have two possibilities:
configure curl to use a specific and authorized proxy.
use the default R internet connection i.e. the Internet Explorer proxy defined in internet2.dll.
In rdbnomics, by default the function curl_fetch_memory
(of the package curl) is used to fetch the data. If a specific proxy must be used, it is possible to define it permanently with the package option rdbnomics.curl_config
or on the fly through the argument curl_config
. Because the object is a named list, its elements are passed to the connection (the curl_handle
object created internally with new_handle()
) with handle_setopt()
before using curl_fetch_memory
.
To see the available parameters, run names(curl_options())
in R or visit the website https://curl.haxx.se/libcurl/c/curl_easy_setopt.html. Once they are chosen, you define the curl object as follows:
h <- list(
proxy = "<proxy>",
proxyport = <port>,
proxyusername = "<username>",
proxypassword = "<password>"
)
The curl connection can be set up for a session by modifying the following package option:
When fetching the data, the following command is executed:
hndl <- curl::new_handle()
curl::handle_setopt(hndl, .list = getOption("rdbnomics.curl_config"))
curl::curl_fetch_memory(url = <...>, handle = hndl)
After configuration, just use the standard functions of rdbnomics e.g.:
This option of the package can be disabled with:
If a complete configuration is not needed but just an “on the fly” execution, then use the argument curl_config
of the functions rdb
and rdb_...
:
To retrieve the data with the default R internet connection, rdbnomics will use the base function readLines
.
To activate this feature for a session, you need to enable an option of the package:
And then use the standard function as follows:
This configuration can be disabled with:
If you just want to do it once, you may use the argument use_readLines
of the functions rdb
and rdb_...
:
The rdbnomics package can interact with the Time Series Editor of DBnomics to transform time series by applying filters to them.
Available filters are listed on the filters page https://editor.nomics.world/filters.
Here is an example of how to proceed to interpolate two annual time series with a monthly frequency, using a spline interpolation:
filters <- list(
code = "interpolate",
parameters = list(frequency = "monthly", method = "spline")
)
df <- rdb(
ids = c("AMECO/ZUTN/EA19.1.0.0.0.ZUTN", "AMECO/ZUTN/DNK.1.0.0.0.ZUTN"),
filters = filters
)
If you want to apply more than one filter, the filters
argument will be a list of valid filters:
filters <- list(
list(
code = "interpolate",
parameters = list(frequency = "monthly", method = "spline")
),
list(
code = "aggregate",
parameters = list(frequency = "bi-annual", method = "end_of_period")
)
)
df <- rdb(
ids = c("AMECO/ZUTN/EA19.1.0.0.0.ZUTN", "AMECO/ZUTN/DNK.1.0.0.0.ZUTN"),
filters = filters
)
The data.table
columns change a little bit when filters are used. There are two new columns:
period_middle_day
: the middle day of original_period
(can be useful when you compare graphically interpolated series and original ones).filtered
(boolean): TRUE
if the series is filtered, FALSE
otherwise.The content of two columns are modified:
series_code
: same as before for original series, but the suffix _filtered
is added for filtered series.series_name
: same as before for original series, but the suffix (filtered)
is added for filtered series.data.table
object into a xts
objectFor some analysis, it is more convenient to have a xts
object instead of a data.table
object. To transform it, you can use the following functions:
library(rdbnomics)
to_xts <- function(
x,
needed_columns = c("period", "series_code", "series_name", "value"),
series_columns = c("series_code", "series_name")
) {
if (is.null(x)) {
return(NULL)
}
all_cols <- length(setdiff(needed_columns, colnames(x))) != 0
if (all_cols) {
stop(
paste0(
"To export as a xts object, some columns are missing. Needed columns ",
"are \u0022", paste0(needed_columns, collapse = "\u0022, \u0022"),
"\u0022"
),
call. = FALSE
)
}
x <- x[, .SD, .SDcols = needed_columns]
data.table::setcolorder(x, needed_columns)
attr_names <- NULL
if (!is.null(series_columns)) {
attr_names <- unique(x[, .SD, .SDcols = series_columns])
}
if (nrow(x) > 0) {
x <- data.table::dcast.data.table(
x, period ~ series_code,
value.var = "value"
)
} else {
orig <- Sys.Date() - as.numeric(Sys.Date())
x <- data.table(
period = as.Date(numeric(), origin = orig),
no_code = numeric()
)
}
x <- data.table::as.xts.data.table(x)
xts::xtsAttributes(x) <- list(codename = attr_names)
x
}
rdb("IMF", "CPI", mask = "M.DE+FR.PCPIEC_WT")
#> @frequency dataset_code dataset_name indexed_at original_period period
#> 1: monthly CPI Consumer Price Index (CPI) 2019-05-19 08:19:35 1996-01 1996-01-01
#> 2: monthly CPI Consumer Price Index (CPI) 2019-05-19 08:19:35 1996-02 1996-02-01
#> ... ... ... ... ... ...
#> 569: monthly CPI Consumer Price Index (CPI) 2019-05-19 08:19:35 2019-02 2019-02-01
#> 570: monthly CPI Consumer Price Index (CPI) 2019-05-19 08:19:35 2019-03 2019-03-01
to_xts(rdb("IMF", "CPI", mask = "M.DE+FR.PCPIEC_WT"))
#> M.DE.PCPIEC_WT M.FR.PCPIEC_WT
#> 1995-01-01 NA 20.0
#> 1995-02-01 NA 20.0
#> ... ... ...
#> 2019-02-01 30.10 25.8
#> 2019-03-01 30.10 25.8
In the xts
object, the series codes are used as column names. If you prefer the series names (or apply a function to them), you can utilize the function:
rdb_rename_xts <- function(x, fun = NULL, ...) {
nm <- xts::xtsAttributes(x)$codename
cols <- nm$series_name[match(names(x), nm$series_code)]
if (is.null(fun)) {
names(x) <- cols
} else {
names(x) <- sapply(X = cols, FUN = fun, ..., USE.NAMES = FALSE)
}
x
}
library(magrittr)
rdb("IMF", "CPI", mask = "M.DE+FR.PCPIEC_WT") %>%
to_xts() %>%
rdb_rename_xts()
#> Monthly – Germany – Communication, Weight Monthly – France – Communication, Weight
#> 1995-01-01 NA 20.0
#> 1995-02-01 NA 20.0
#> ... ... ...
#> 2019-02-01 30.10 25.8
#> 2019-03-01 30.10 25.8
rdb("IMF", "CPI", mask = "M.DE+FR.PCPIEC_WT") %>%
to_xts() %>%
rdb_rename_xts(stringr::word, start = 3)
#> Germany France
#> 1995-01-01 NA 20.0
#> 1995-02-01 NA 20.0
#> ... ... ...
#> 2019-02-01 30.10 25.8
#> 2019-03-01 30.10 25.8
Visit https://db.nomics.world/ !