rstanarm: Bayesian Applied Regression Modeling via Stan

Estimates previously compiled regression models using the 'rstan' package, which provides the R interface to the Stan C++ library for Bayesian estimation. Users specify models via the customary R syntax with a formula and data.frame plus some additional arguments for priors.

Version: 2.19.2
Depends: R (≥ 3.4.0), Rcpp (≥ 0.12.0), methods
Imports: bayesplot (≥ 1.7.0), ggplot2 (≥ 2.2.1), lme4 (≥ 1.1-8), loo (≥ 2.1.0), Matrix (≥ 1.2-13), nlme (≥ 3.1-124), rstan (≥ 2.19.1), rstantools (≥ 2.0.0), shinystan (≥ 2.3.0), stats, survival (≥ 2.40.1), utils
LinkingTo: StanHeaders (≥ 2.19.0), rstan (≥ 2.19.1), BH (≥ 1.66.0), Rcpp (≥ 0.12.0), RcppEigen (≥
Suggests: betareg, data.table (≥ 1.10.0), digest, gridExtra, HSAUR3, knitr (≥ 1.15.1), MASS, mgcv (≥ 1.8-13), rmarkdown, roxygen2, testthat (≥ 1.0.2)
Published: 2019-10-03
Author: Jonah Gabry [aut], Imad Ali [ctb], Sam Brilleman [ctb], Jacqueline Buros Novik [ctb] (R/stan_jm.R), AstraZeneca [ctb] (R/stan_jm.R), Trustees of Columbia University [cph], Simon Wood [cph] (R/stan_gamm4.R), R Core Deveopment Team [cph] (R/stan_aov.R), Douglas Bates [cph] (R/pp_data.R), Martin Maechler [cph] (R/pp_data.R), Ben Bolker [cph] (R/pp_data.R), Steve Walker [cph] (R/pp_data.R), Brian Ripley [cph] (R/stan_aov.R, R/stan_polr.R), William Venables [cph] (R/stan_polr.R), Paul-Christian Burkner [cph] (R/misc.R), Ben Goodrich [cre, aut]
Maintainer: Ben Goodrich <benjamin.goodrich at>
License: GPL (≥ 3)
NeedsCompilation: yes
SystemRequirements: GNU make, pandoc (>= 1.12.3), pandoc-citeproc
Citation: rstanarm citation info
Materials: NEWS
CRAN checks: rstanarm results


Reference manual: rstanarm.pdf
Vignettes: stan_aov: ANOVA Models
stan_betareg: Models for Rate/Proportion Data
stan_glm: GLMs for Binary and Binomial Data
stan_glm: GLMs for Continuous Data
stan_glm: GLMs for Count Data
stan_glmer: GLMs with Group-Specific Terms
stan_jm: Joint Models for Longitudinal and Time-to-Event Data
stan_lm: Regularized Linear Models
mrp: MRP in rstanarm
stan_polr: Ordinal Models
Hierarchical Partial Pooling
Prior Distributions
How to Use the rstanarm Package
Package source: rstanarm_2.19.2.tar.gz
Windows binaries: r-devel:, r-devel-gcc8:, r-release:, r-oldrel:
OS X binaries: r-release: rstanarm_2.19.2.tgz, r-oldrel: rstanarm_2.19.2.tgz
Old sources: rstanarm archive

Reverse dependencies:

Reverse depends: evidence
Reverse imports: embed, psycho, tidyposterior
Reverse suggests: afex, bayesplot, BayesPostEst, bayestestR, bridgesampling, broom, broom.mixed, butcher, effectsize, ggeffects, insight, loo, merTools, parameters, performance, projpred, RBesT, see, shinystan, sjPlot, sjstats, tidybayes
Reverse enhances: emmeans, interactions, jtools


Please use the canonical form to link to this page.