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bone Bone Mineral Density Data

Description

Measurements in the bone mineral density of 261 north american adolescents, as function of age.
Each value is the difference in spnbmd taken on two consecutive visits, divided by the average. The
age is the average age over the two visits.

Usage

data(bone)
Format

A data frame with 485 observations on the following 4 variables.

idnum identifies the child, and hence the repeat measurements

age average of age at two visits

gender a factor with levels female male

spnbmd Relative Spinal bone mineral density measurement



countries 3

Source

Bachrach LK, Hastie T, Wang M-C, Narasimhan B, Marcus R. Bone Mineral Acquisition in Healthy
Asian, Hispanic, Black and Caucasian Youth. A Longitudinal Study. J Clin Endocrinol Metab
(1999) 84, 4702-12.

Examples

summary (bone)
# We ignore the repeat measurements:
# smooth.spline is in standard package stats.
names (bone)
# Plot page 128 in the book:
plot(spnbmd ~ age, data=bone, col =
ifelse(gender=="male", "blue", "red2"),
xlab="Age", ylab="Relative Change in Spinal BMD")
bone.spline.male <- with(subset(bone,gender=="male"),
smooth.spline(age, spnbmd,df=12))
bone.spline.female <- with(subset(bone, gender=="female"),
smooth.spline(age, spnbmd, df=12))
lines(bone.spline.male, col="blue")
lines(bone.spline.female, col="red2")
legend(20,0.20, legend=c("male”, "Female"), col=c("blue”, "red2"),
lwd=2)

countries Country Dissimilarities

Description

Political science students were asked to give pairwise dissimilarities for 12 countries.

Usage

data(countries)

Format

The format is: num [1:12, 1:12] 0 5.58 7 7.08 4.83 2.17 6.42 3.42 2.5 6.08 ... - attr(*, "dim-
names")=List of 2 ..$ : chr [1:12] "BEL" "BRA" "CHI" "CUB" ... .. $: chr [1:12] "BEL" "BRA"
"CHI" "CUB" ...

Details

These are average dissimilarities over students.

Source

Kaufman, L. and Rousseeuw, P. (1990) Finding Groups in data: An Introduction to Cluster Analysis,
Wiley, New York.
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Examples

str(countries)

colnames(countries)

rownames(countries)

if(require(MASS)){

# We use multidimensional scaling:
if(interactive())par(ask=TRUE)
countries.cmdscale <- cmdscale(countries, k=2, eig=TRUE)
egscplot(countries.cmdscale$points)
countries.sam <- sammon(countries)
eqscplot(countries.sam$points)

galaxy Galaxy Data

Description

Radial Velocity of Galaxy NGC7531

Usage

data(galaxy)

Format

A data frame with 323 observations on the following 5 variables.
east.west the east-west coordinate. The origin, (0,0), is near the center of the galaxy, east is nega-
tive, west is positive.

north.south the north-south coordinate. The origin, (0,0), is near the center of the galaxy, south is
negative, north is positive.

angle degrees of counter-clockwise rotation from the horizon- tal of the slot within which the
observation lies.

radial.position signed distance from origin; negative if east-west coordinate is negative.

velocity radial velocity measured in km/sec.

Details

The galaxy data frame records the radial velocity of a spiral galaxy measured at 323 points in the
area of sky which it covers. All the measurements lie within seven slots crossing at the origin. The
positions of the meas- urements given by four variables (columns).
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Source

Buta, R. (1987) The Structure and Dynamics of Ringed Galaxies, III: Surface Photometry and
Kinematics of the Ringed Nonbarred Spiral NGC7531. The Astrophysical J. Supplement Ser. Vol.
64, pp. 1-37.

John M. Chambers and Trevor J. Hastie, (eds.) Statistical Models in S, Wadsworth and Brooks,
Pacific Grove, CA 1992, pg. 352.
Examples

str(galaxy)
summary (galaxy)

marketing Market Basket Analysis

Description

The dataset is an extract from this survey. It consists of 14 demographic attributes. The dataset is a
good mixture of categorical and continuos variables with a lot of missing data. This is characteristic
for data mining applications.

Usage

data(marketing)

Format
A data frame with 8993 observations on the following 14 variables.

Income ANNUAL INCOME OF HOUSEHOLD (PERSONAL INCOME IF SINGLE) 1. Less
than \$10,000 2. \$10,000 to \$14,999 3. \$15,000 to \$19,999 4. 1$20,000 to \$24,999 5.
\$25,000 to \$29,999 6. \$30,000 to \$39,999 7. \$40,000 to \$49,999 8. \$50,000 to \$74,999
9.\$75,000 or more

Sex 1. Male 2. Female

Marital 1. Married 2. Living together, not married 3. Divorced or separated 4. Widowed 5. Single,
never married

Age 1. 14 thru 17 2. 18 thru 24 3. 25 thru 34 4. 35 thru 44 5. 45 thru 54 6. 55 thru 64 7. 65 and
Over

Edu 1. Grade 8 or less 2. Grades 9 to 11 3. Graduated high school 4. 1 to 3 years of college 5.
College graduate 6. Grad Study

Occupation 1. Professional/Managerial 2. Sales Worker 3. Factory Worker/Laborer/Driver 4.
Clerical/Service Worker 5. Homemaker 6. Student, HS or College 7. Military 8. Retired 9.
Unemployed

Lived HOW LONG HAVE YOU LIVED IN THE SAN FRAN./OAKLAND/SAN JOSE AREA?
1. Less than one year 2. One to three years 3. Four to six years 4. Seven to ten years 5. More
than ten years
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Dual_Income DUAL INCOMES (IF MARRIED) 1. Not Married 2. Yes 3. No

Household PERSONS IN YOUR HOUSEHOLD 1. One 2. Two 3. Three 4. Four 5. Five 6. Six
7. Seven 8. Eight 9. Nine or more

Householdu1l8 PERSONS IN HOUSEHOLD UNDER 18 0. None 1. One 2. Two 3. Three 4.
Four 5. Five 6. Six 7. Seven 8. Eight 9. Nine or more

Status HOUSEHOLDER STATUS 1. Own 2. Rent 3. Live with Parents/Family
Home_Type 1. House 2. Condominium 3. Apartment 4. Mobile Home 5. Other

Ethnic 1. American Indian 2. Asian 3. Black 4. East Indian 5. Hispanic 6. Pacific Islander 7.
White 8. Other

Language WHAT LANGUAGE IS SPOKEN MOST OFTEN IN YOUR HOME? 1. English 2.
Spanish 3. Other

Details

The goal is to predict the Anual Income of Household from the other 13 demographics attributes.
Number of instances: 8§993.

These are obtained from the original dataset with 9409 instances, by removing those observations
with the response (Annual Income) missing.

Source

Source: Impact Resources, Inc., Columbus, OH (1987). A total of N=9409 questionnaires containg
502 questions were filled out by shopping mall customers in the San Francisco Bay area.

Examples

str(marketing)
summary(marketing)

mixture.example Mixture Example

Description

This is a simulated mixture example with 200 instances and two classes. 100 members in each
class.

Usage

data(mixture.example)
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Format

The format is: List of 8 \$ x : 200 x 2 matrix of training predictors \$ y : 200 x 2 matrix of
class labels, O==green, 1==red \$ xnew : matrix [1:6831, 1:2] -2.6 -2.5 -2.4 -2.3-2.2 ... .. - attr(*,
"class")= chr "matrix" ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:6831] "1" "2" "3" "4" ... .. .$
: chr [1:2] "x1" "x2" : matrix 6831 x 2 of lattice points in predictor space \$ prob : atomic [1:6831]
3.55e-05 3.05e-05 2.63e-05 2.27e-05 1.96e-05 ... .. - attr(*, ".Names")= chr [1:6831] "1" "2" "3"
"4" .. vector of 6831 probabilities (of class RED) at each lattice point \$ marginal: atomic [1:6831]
6.65e-15 2.31e-14 7.62e-14 2.39e-13 7.15e-13 ... .. - attr(*, ".Names")= chr [1:6831] "1" "2" "3"
"4" ... : marginal probability at each lattice point \$ px1 : 69 lattice coordinates for x.1 \$ px2 :
99 lattice values for x.2 (69%99=6831) \$ means : num [1:20, 1:2] : 20 x 2 matrix of the mixture
centers, first ten for one class, next ten for the other

Examples

str(mixture.example)

if(interactive())par(ask=TRUE)
X <- mixture.example$x

g <- mixture.example$y

x.mod <- Im( g ~ x)

# Figure 2.1:

plot(x, col=ifelse(g==1,"red"”, "green"), xlab="x1", ylab="x2")
coef (x.mod)

abline( (0.5-coef(x.mod)[1])/coef(x.mod)[3], -coef(x.mod)[2]/coef(x.mod)[3])
ghat <- ifelse( fitted(x.mod)>0.5, 1, @)

length(ghat)

sum(ghat == g)

1 - sum(ghat==g)/length(g)

#[1]1 @0.27

# Training misclassification rate
xnew <- mixture.example$xnew
dim(xnew)

colnames(xnew)

library(class)

mod15 <- knn(x, xnew, g, k=15, prob=TRUE)

summary (mod15)

#Figure 2.2:

plot(x, col=ifelse(g==1,"red"”, "green"),xlab="x1", ylab="x2")

str(mod15)

prob <- attr(mod15, "prob")

prob <- ifelse( mod15=="1", prob, 1-prob) # prob is voting fraction for winning class!
# Now it is voting fraction for red==

px1 <- mixture.example$px1
px2 <- mixture.example$px2

prob15 <- matrix(prob, length(px1), length(px2))
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contour(px1, px2, prob15, levels=0.5, labels="", xlab="x1", ylab="x2", main=
"15-nearest neighbour")

# adding the points to the plot:

points(x, col=ifelse(g==1, "red"”, "green"))

ghat15 <- ifelse(knn(x,x,k=15, cl=g)=="1", 1, 0)
sum(ghat15==g)

# [1] 169

1 - sum(ghat15==g)/length(g)

# [1] 0.155

# Misclassification rate for knn(, k=15)

# Then we want the plot for knn with k=1: (Figure 2.3)

mod1 <- knn(x, xnew, k=1, cl=g, prob=TRUE)
prob <- attr(modl1, "prob")
prob <- ifelse( mod1=="1", prob, 1-prob) # prob now is voting
# fraction for "red”
probl <- matrix(prob, length(px1), length(px2) )
contour(px1, px2, probl, level=0.5, labels="", xlab="x1", ylab="x2", main=
"1-nearest neighbour")
# Adding the points to the plot:

points(x, col=ifelse(g==1, "red"”, "green"))

# Reproducing figure 2.4, page 17 of the book:

# The data do not contain a test sample, so we make one,

# using the description of the oracle page 17 of the book: The centers
# is in the means component of mixture.example, with green(@) first,

# so red(1). For a test sample of size 10000 we simulate

# 5000 observations of each class.

library(MASS)

set.seed(123)

centers <- c(sample(1:10, 5000, replace=TRUE),
sample(11:20, 5000, replace=TRUE))

means <- mixture.example$means

means <- means[centers, ]

mix.test <- mvrnorm(10000, c(0,0), 0.2xdiag(2))

mix.test <- mix.test + means

cltest <- c(rep(@, 5000), rep(1, 5000))

ks <- ¢(1,3,5,7,9,11,15,17,23,25,35,45,55,83,101,151 )

# nearest neighbours to try

nks <- length(ks)

misclass.train <- numeric(length=nks)

misclass.test <- numeric(length=nks)

names(misclass.train) <- names(misclass.test) <- ks

for (i in seq(along=ks)) {
mod.train <- knn(x,x,k=ks[i],cl=g)
mod.test <- knn(x, mix.test,k= ks[i],cl= g)
misclass.train[i] <- 1 - sum(mod.train==factor(g))/200
misclass.test[i] <- 1 - sum(mod.test==factor(cltest))/10000
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}

print(cbind(misclass.train, misclass.test))

# Using package mclust@2 # Note that this package is no longer on CRAN,
# but must be searched in the archives.

## Not run:
if(require(mclust@2)){
x <- mixture.example$x
g <- mixture.example$y
xnew <- mixture.example$xnew
px1 <- mixture.example$px1
px2 <- mixture.example$px2

mix.mclust <- mclustDA(x, g, xnew, G=1:6, verbose=TRUE)
mix.mclust
} # end require (mclust@2)

## End(Not run) # end \dontrun

# Figure 2.4

plot(misclass.train,xlab="Number of NN",6ylab="Test error”,type="n",6xaxt="n")
axis(1, 1:1length(ks), as.character(ks))
lines(misclass.test,type="b",col="blue',pch=20)

lines(misclass.train, type="b",col="red',pch=20)
legend("bottomright”,1ty=1,col=c("red","blue"”),legend = c("train ", "test "))

#Figure 2.5
prob<-mixture.example$prob
prob.bayes <- matrix(prob, length(px1), length(px2))
contour(px1, px2, prob.bayes, levels=0.5, labels="", xlab="x1",
ylab="x2",

main="Bayes decision boundary")

points(x, col=ifelse(g==1, "red"”, "green"))

nci NCI microarray data (chap 14)

Description

Human Tumour Microarray Data

Usage

data(nci)

Format

The format is: num [1:6830, 1:64] 0.300 1.180 0.550 1.140 -0.265 ... - attr(*, "dimnames")=List of
2.$:NULL..$: chr[1:64] "CNS" "CNS" "CNS" "RENAL" ...
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Source

Originally from ‘http://genome-www.stanford.edu/nci6@/’. Currently via the book’s website,
https://web.stanford.edu/~hastie/ElemStatLearn/datasets/nci.data.csv.
Examples

str(nci)
summary (nci)

orangel0.test Simulated Orange Data

Description

These simulation data are described on the revised page 384-5 of the book. See the errata file for a
revised version if your book is not the fourth or later printing.

There are 50 x four datasets - training and test data for the four dimensional problem, and training
and test data for the 10 dimensional problem.

Usage

data(orangel®.test)

Format

The format is: List of 50 \$ 1 :‘data.frame’: 1000 obs. of 12 variables: ..\$ class: int [1:1000] -1 -1
-1-1-1-1-1-1-1-1..... \$ F1 : num [1:1000] -0.780 2.097 0.798 -0.896 -0.365 ... .. \$ F2 : num
[1:1000] 2.5767 0.4146 0.0381 -2.0925 -2.2895 ... .. \$ F3 : num [1:1000] 1.18 -2.45 -2.03 -1.36
-2.63 ... .. \$ F4 : num [1:1000] -0.997 0.710 -2.223 2.478 -0.666 ... .. \$ F5 : num [1:1000] -0.308
0.418 0.407 -0.198 1.347 ... .. \$ F6 : num [1:1000] 0.126 -0.718 -1.173 2.390 0.122 ... .. \$ F7 :
num [1:1000] 0.3233 0.0846 0.3814 -0.5928 -0.0555 ... .. \$ F8 : num [1:1000] -0.668 1.836 2.006
-0.782 -0.164 ... .. \$ F9 : num [1:1000] -1.7559 -0.0389 1.7472 -2.1746 0.5236 ... .. \$ F10 : num
[1:1000] -0.926 0.196 -0.960 -0.820 -1.207 ... .. \$ f : Factor w/ 50 levels "1","2","3","4",.. 1111
111111...... and then 49 similar ones.

Source

Data simulated for the book.

Examples

str(orangel10.test)


https://web.stanford.edu/~hastie/ElemStatLearn/datasets/nci.data.csv
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orangel@.train Simulated Orange Data

Description

These simulation data are described on the revised page 384-5 of the book. See the errata file for a
revised version if your book is not the fourth or later printing.

There are 50 x four datasets - training and test data for the four dimensional problem, and training
and test data for the 10 dimensional problem.

Usage

data(orangel1@.train)

Format

The format is: List of 50 \$ 1 :‘data.frame’: 100 obs. of 12 variables: ..\$ class: int [1:100] -1 -1
-1-1-1-1-1-1-1-1..... \$ F1 : num [1:100] -3.063 0.488 -2.791 2.010 -0.961 ... .. \$ F2 : num
[1:100] -1.091 -1.025 0.180 0.875 -2.388 ... .. \$ F3 : num [1:100] 0.0466 -1.5788 -1.5160 1.8155
-1.7695 ... .\$ F4 : num [1:100] -1.794 -2.314 -1.013 -2.374 -0.857 ... .. \$ F5 : num [1:100] 1.2722
2.0690 -0.0983 -2.2647 -0.789%4 ... .. \$ F6 : num [1:100] 1.393 -0.398 -0.930 -1.687 -1.121 ... .. \$
F7 : num [1:100] -2.433 0.964 -0.387 0.851 -1.163 ... .. \$ F8 : num [1:100] 0.610 -0.621 -0.727
-0.319 1914 ... .. \$ F9 : num [1:100] 0.904 -1.129 -0.377 -0.665 -0.691 ... .. \$ F10 : num [1:100]
1.591 0.533 0.837 1.285 -1.056 ... .. \$ f : Factor w/ 50 levels "1","2","3""4", . 1111111111
...... and then 49 similar ones.

Source

Data simulated for the book.

Examples

str(orange1@.train)

orange4.test Simulated Orange Data

Description

These simulation data are described on the revised page 384-5 of the book. See the errata file for a
revised version if your book is not the fourth or later printing.

There are 50 x four datasets - training and test data for the four dimensional problem, and training
and test data for the 10 dimensional problem.
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Usage

data(orange4.test)

Format

The format is: List of 50 \$ 1 :‘data.frame’: 1000 obs. of 6 variables: ..\$ class: int [1:1000] -1
-1-1-1-1-1-1-1-1-1..... \$ F1 : num [1:1000] 2.352 -0.295 1.000 -0.133 -0.774 ... .. \$ F2:
num [1:1000] -1.56 -2.08 1.59 -1.39 0.25 ... .. \$ F3 : num [1:1000] -1.058 0.355 1.779 2.281 1.486
..... \$ F4 : num [1:1000] -0.0382 2.2957 -1.8081 1.5588 -3.0523 ... .\$ f: Factor w/ 50 levels
2ttt t4t 1111111111 and then 49 similar ones.

Source

Data simulated for the book.

Examples

str(orange4.test)

orange4.train Simulated Orange Data

Description

These simulation data are described on the revised page 384-5 of the book. See the errata file for a
revised version if your book is not the fourth or later printing.

There are 50 x four datasets - training and test data for the four dimensional problem, and training
and test data for the 10 dimensional problem.
Usage

data(orange4.train)

Format

The format is: List of 50 \$ 1 :‘data.frame’: 100 obs. of 6 variables: ..\$ class: int [1:100] -1 -1
-1-1-1-1-1-1-1-1..... \$ F1 : num [1:100] -0.252 -2.482 -2.497 2.220 0.727 ... .. \$ F2 : num
[1:100] 2.73 1.48 -2.13 -1.64 -2.62 ... .. \$ F3 : num [1:100] -0.864 0.411 0.136 -1.809 1.344 ... .. \$
F4 : num [1:100] 1.535 1.335 0.482 1.682 0.834 ... .. \$ f: Factor w/ 50 levels "1","2","3","4",..: 1
1111111 11...... and then 49 similar ones.

Source

Data simulated for the book.

Examples

str(orange4.train)
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ozone Ozone Data

Description

Ozone data from New York.

Usage

data(ozone)

Format

A data frame with 111 observations on the following 4 variables.

ozone a numeric vector
radiation a numeric vector
temperature a numeric vector

wind a numeric vector

Details

Data frame with components: ozone, radiation, temperature, and wind. Measurements of daily
ozone con- centration (ppb), wind speed (mph), daily maximum temperature (degrees F), and solar
radiation (langleys) on 111 days from May to September 1973 in New York. This data frame is
similar to air in S-PLUS (or library(data) in S), but has a different definition for ozone (air contains
cube-roots of ozone).

Examples

str(ozone)
plot(ozone)

phoneme Data From a Acoustic-Phonetic Continuous Speech Corpus

Description

See Details.

Usage

data(phoneme)



14 phoneme

Format
A data frame with 4509 observations on the following 258 variables.

x.1 a numeric vector

X.2 a numeric vector

x.3 a numeric vector

x.4 a numeric vector

X.5 a numeric vector

X.6 a numeric vector

X.7 a numeric vector

Xx.8 a numeric vector

X.9 a numeric vector

x.10 a numeric vector
x.11 a numeric vector
x.12 a numeric vector
x.13 a numeric vector
x.14 a numeric vector
x.15 a numeric vector
x.16 a numeric vector
x.17 a numeric vector
x.18 a numeric vector
x.19 a numeric vector
x.20 a numeric vector
x.21 a numeric vector
X.22 a numeric vector
x.23 a numeric vector
x.24 a numeric vector
X.25 a numeric vector
Xx.26 a numeric vector
x.27 a numeric vector
x.28 a numeric vector
X.29 a numeric vector
x.30 a numeric vector
x.31 a numeric vector
x.32 a numeric vector
x.33 a numeric vector
x.34 a numeric vector

x.35 a numeric vector
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x.36
x.37
x.38
x.39
x.40
x.41
x.42
x.43
x.44
x.45
x.46
x.47
x.48
x.49
x.50
x.51
x.52
x.53
x.54
x.55
x.56
x.57
x.58
x.59
x.60
x.61
X.62
x.63
x.64
X.65
X.66
X.67
x.68
X.69
x.70
x.71
x.72

a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector

a numeric vector

15
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x.73
x.74
x.75
x.76
x.77
x.78
x.79
x.80
x.81
x.82
x.83
x.84
x.85
x.86
x.87
x.88
x.89
x.90
x.91
x.92
x.93
x.94
x.95
x.96
x.97
x.98
x.99
x.100
x.101
x.102
x.103
x.104
x.105
x.106
x.107
x.108
x.109

a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector

a numeric vector

phoneme
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x.110 a numeric vector
x.111 a numeric vector
x.112 a numeric vector
x.113 a numeric vector
x.114 a numeric vector
x.115 a numeric vector
x.116 a numeric vector
x.117 a numeric vector
x.118 a numeric vector
x.119 a numeric vector
x.120 a numeric vector
x.121 a numeric vector
x.122 a numeric vector
x.123 a numeric vector
x.124 a numeric vector
x.125 a numeric vector
x.126 a numeric vector
x.127 a numeric vector
x.128 a numeric vector
x.129 a numeric vector
x.130 a numeric vector
x.131 a numeric vector
x.132 a numeric vector
x.133 a numeric vector
x.134 a numeric vector
x.135 a numeric vector
x.136 a numeric vector
x.137 a numeric vector
x.138 a numeric vector
x.139 a numeric vector
x.140 a numeric vector
x.141 a numeric vector
x.142 a numeric vector
x.143 a numeric vector
x.144 a numeric vector
x.145 a numeric vector

x.146 a numeric vector

17
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x.147 a numeric vector
x.148 a numeric vector
x.149 a numeric vector
x.150 a numeric vector
x.151 a numeric vector
x.152 a numeric vector
x.153 a numeric vector
x.154 a numeric vector
x.155 a numeric vector
x.156 a numeric vector
x.157 a numeric vector
x.158 a numeric vector
x.159 a numeric vector
x.160 a numeric vector
x.161 a numeric vector
x.162 a numeric vector
x.163 a numeric vector
x.164 a numeric vector
x.165 a numeric vector
x.166 a numeric vector
x.167 a numeric vector
x.168 a numeric vector
x.169 a numeric vector
x.170 a numeric vector
x.171 a numeric vector
x.172 a numeric vector
x.173 a numeric vector
x.174 a numeric vector
x.175 a numeric vector
x.176 a numeric vector
x.177 a numeric vector
x.178 a numeric vector
x.179 a numeric vector
x.180 a numeric vector
x.181 a numeric vector
x.182 a numeric vector

x.183 a numeric vector

phoneme
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x.184
x.185
x.186
x.187
x.188
x.189
x.190
x.191
x.192
x.193
x.194
x.195
x.196
x.197
x.198
x.199
x.200
x.201
x.202
x.203
x.204
x.205
x.206
x.207
x.208
x.209
x.210
x.211
x.212
x.213
x.214
x.215
x.216
x.217
x.218
x.219
x.220

a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector

a numeric vector

19
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x.221 a numeric vector
X.222 a numeric vector
x.223 a numeric vector
x.224 a numeric vector
Xx.225 a numeric vector
X.226 a numeric vector
x.227 a numeric vector
x.228 a numeric vector
X.229 a numeric vector
x.230 a numeric vector
x.231 a numeric vector
x.232 a numeric vector
x.233 a numeric vector
x.234 a numeric vector
x.235 a numeric vector
x.236 a numeric vector
x.237 a numeric vector
x.238 a numeric vector
x.239 a numeric vector
x.240 a numeric vector
x.241 a numeric vector
x.242 a numeric vector
x.243 a numeric vector
x.244 a numeric vector
x.245 a numeric vector
x.246 a numeric vector
x.247 a numeric vector
x.248 a numeric vector
x.249 a numeric vector
x.250 a numeric vector
x.251 a numeric vector
x.252 a numeric vector
X.253 a numeric vector
X.254 a numeric vector
X.255 a numeric vector
X.256 a numeric vector
g afactor with levels aa ao dcl iy sh

speaker a factor with 437 levels

phoneme
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Details

These data arose from a collaboration between Andreas Buja, Werner Stuetzle and Martin Maechler,
and we used as an illustration in the paper on Penalized Discriminant Analysis by Hastie, Buja and
Tibshirani (1995), referenced in the text.

The data were extracted from the TIMIT database (TIMIT Acoustic-Phonetic Continuous Speech
Corpus, NTIS, US Dept of Commerce) which is a widely used resource for research in speech
recognition. A dataset was formed by selecting five phonemes for classification based on digitized
speech from this database. The phonemes are transcribed as follows: "sh" as in "she", "dcl" as
in "dark", "iy" as the vowel in "she", "aa" as the vowel in "dark", and "ao" as the first vowel in
"water". From continuous speech of 50 male speakers, 4509 speech frames of 32 msec duration
were selected, approximately 2 examples of each phoneme from each speaker. Each speech frame
is represented by 512 samples at a 16kHz sampling rate, and each frame represents one of the above
five phonemes. The breakdown of the 4509 speech frames into phoneme frequencies is as follows:

aa ao dcl iy sh 695 1022 757 1163 872

From each speech frame, we computed a log-periodogram, which is one of several widely used
methods for casting speech data in a form suitable for speech recognition. Thus the data used in what
follows consist of 4509 log-periodograms of length 256, with known class (phoneme) memberships.

The data contain 256 columns labelled "x.1" - "x.256", a response column labelled "g", and a
column labelled "speaker" identifying the different speakers.

Examples

head(str(phoneme))

prostate Prostate Cancer Data

Description
Data to examine the correlation between the level of prostate-specific antigen and a number of
clinical measures in men who were about to receive a radical prostatectomy.

Usage

data(prostate)

Format
A data frame with 97 observations on the following 10 variables.

Icavol log cancer volume

Iweight log prostate weight

age in years

Ibph log of the amount of benign prostatic hyperplasia

svi seminal vesicle invasion
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Icp log of capsular penetration
gleason a numeric vector

pggd5 percent of Gleason score 4 or 5
Ipsa response

train a logical vector

Details

The last column indicates which 67 observations were used as the "training set" and which 30 as
the test set, as described on page 48 in the book.

Note

There was an error in this dataset in earlier versions of the package, as indicated in a footnote on
page 3 of the second edition of the book. As of version 2012.04-0 this was corrected.

Source

Stamey, T., Kabalin, J., McNeal, J., Johnstone, I., Freiha, F., Redwine, E. and Yang, N (1989)
Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate II. Radical
prostatectomy treted patients, Journall of Urology 16: 1076-1083.

Examples

if(interactive())par(ask=TRUE)
str( prostate )
cor( prostate[,1:8] )
pairs( prostate[,1:9], col="violet” )
train <- subset( prostate, train==TRUE )[,1:9]
test <- subset( prostate, train=FALSE )[,1:9]
#
if( require(leaps)) {
# The book (page 56) uses only train subset, so we the same:
prostate.leaps <- regsubsets( lpsa ~ . , data=train, nbest=70, #all!
really.big=TRUE )
prostate.leaps.sum <- summary( prostate.leaps )
prostate.models <- prostate.leaps.sum$which
prostate.models.size <- as.numeric(attr(prostate.models, "dimnames”)[[1]1)
hist( prostate.models.size )
prostate.models.rss <- prostate.leaps.sum$rss
prostate.models.best.rss <-
tapply( prostate.models.rss, prostate.models.size, min )

prostate.models.best.rss
# Let us add results for the only intercept model
prostate.dummy <- 1lm( lpsa ~ 1, data=train )
prostate.models.best.rss <- c(

sum(resid(prostate.dummy)*2),

prostate.models.best.rss)
# Making a plot:
plot( 0:8, prostate.models.best.rss, ylim=c(@, 100),
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type="b", xlab="subset size", ylab="Residual Sum Square”,

col="red2" )
points( prostate.models.size, prostate.models.rss, pch=17, col="brown"”,cex=0.7 )
}
# For a better plot, should remove the best for each size from last call!
# Now with ridge regression:
# Ridge regression in R is multiply implemented, at least:
# MASS: 1lm.ridge
# mda : gen.ridge
#( survival: ridge)
# Design: pentrace
# mgcv: pcls (very general)
# simple.ridge (in this package)
#
library(mda)
#
prostate.ridge.list <- lapply(list(lambda=seq(@,8,by=0.4)), function(lambda)

gen.ridge(train[,1:8], y=train[,9,drop=FALSE], lambda=1ambda))
# Problems with this usage.
# simpler usage:
#
prostate.ridge <- gen.ridge(train[,1:8], y=train[,9,drop=FALSE], lambda=1)
#
# Since there is some problems with the mda functions, we use our own:
#
prostate.ridge <- simple.ridge( train[,1:8], train[,9], df=1:8 )
#
# coefficient traces:
#
matplot( prostate.ridge$df, t(prostate.ridge$beta), type="b",
col="blue", pch=17, ylab="coefficients” )

# Calculations for the lasso:

#
if(require(lasso2)) {
prostate.lasso <- 1llce( lpsa ~ ., data=train, trace=TRUE, sweep.out=~1,

bound=seq(@,1,by=0.1) )
prostate.lasso.coef <- sapply(prostate.lasso, function(x) x$coef)
colnames(prostate.lasso.coef) <- seq( 0,1,by=0.1 )
matplot( seq(@,1,by=0.1), t(prostate.lasso.coef[-1,]), type="b",
xlab="shrinkage factor"”, ylab="coefficients”,
xlim=c(@, 1.2), col="blue", pch=17 )
3
#
# lasso with lars:
if (require(lars)) {
#
prostate.lasso.lars <- lars( as.matrix(train[,1:8]1), train[,9],
type="lasso"”, trace=TRUE )
cv.lars( as.matrix(train[,1:8]), train[,9],
type="lasso"”, trace=TRUE, K=10 )
3
#
# CV (cross-validation) using package boot:

23
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#

library(boot)

prostate.glm <- glm( lpsa ~ ., data=train )

# repeat this some times to make clear that cross-validation is
# a random procedure

#

cv.glm( train, prostate.glm, K=10 )$delta

#

# This is a two-component vector, raw cross-validated estimate and
# adjusted cross-validated estimate.

summary( prostate.glm )

#

SAheart South African Hearth Disease Data

Description

A retrospective sample of males in a heart-disease high-risk region of the Western Cape, South
Africa.

Usage

data(SAheart)

Format
A data frame with 462 observations on the following 10 variables.

sbp systolic blood pressure

tobacco cumulative tobacco (kg)

1dl low density lipoprotein cholesterol

adiposity a numeric vector

famhist family history of heart disease, a factor with levels Absent Present
typea type-A behavior

obesity a numeric vector

alcohol current alcohol consumption

age age at onset

chd response, coronary heart disease

Details

A retrospective sample of males in a heart-disease high-risk region of the Western Cape, South
Africa. There are roughly two controls per case of CHD. Many of the CHD positive men have
undergone blood pressure reduction treatment and other programs to reduce their risk factors after
their CHD event. In some cases the measurements were made after these treatments. These data are
taken from a larger dataset, described in Rousseauw et al, 1983, South African Medical Journal.
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Source
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Rousseauw, J., du Plessis, J., Benade, A., Jordaan, P., Kotze, J. and Ferreira, J. (1983). Coronary
risk factor screening in three rural communities, South African Medical Journal 64: 430—436.

Examples

str(SAheart)
summary (SAheart)

simple.ridge

Simple Ridge Regression

Description

Function to do simple ridge regression.

Usage

simple.ridge(x, y, lambda = 1, df, ...)

Arguments

X

y
lambda

df

Details

predictor matrix, NA’s not allowed. Should not include a column of 1’s.
response matrix, NA’s not allowed

vector of ridge coefficients

vector of target degrees of freedom. lambda is calculated from these.

Presently not used

Principal advantage with this compared to other implementations of ridge regression in R is that
we can do the calculations for multiple degrees of freedom at once. Ridging is not applied to the

intercept.

Value

List with components:

beta®
beta
lambda
df

Author(s)

intercept

matrix of coefficients. One column for each lambda
lambda used

df used

Kjetil B. Halvorsen
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Examples

# See examples for \link{prostate}.

spam Email Spam Data

Description

SPAM E-mail Database. See Details below.

Usage

data(spam)

Format
A data frame with 4601 observations on the following 58 variables.

A.1 a numeric vector
A.2 anumeric vector
A.3 a numeric vector
A.4 anumeric vector
A.5 anumeric vector
A.6 a numeric vector
A.7 anumeric vector
A.8 a numeric vector
A.9 anumeric vector
A.10 a numeric vector
A.11 a numeric vector
A.12 a numeric vector
A.13 a numeric vector
A.14 a numeric vector
A.15 a numeric vector
A.16 a numeric vector
A.17 anumeric vector
A.18 a numeric vector
A.19 a numeric vector
A.20 a numeric vector
A.21 a numeric vector

A.22 anumeric vector
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A.23 a numeric vector
A.24 a numeric vector
A.25 anumeric vector
A.26 anumeric vector
A.27 anumeric vector
A.28 a numeric vector
A.29 a numeric vector
A.30 a numeric vector
A.31 a numeric vector
A.32 a numeric vector
A.33 anumeric vector
A.34 anumeric vector
A.35 anumeric vector
A.36 anumeric vector
A.37 anumeric vector
A.38 anumeric vector
A.39 a numeric vector
A.40 a numeric vector
A.41 a numeric vector
A.42 a numeric vector
A.43 a numeric vector
A.44 a numeric vector
A.45 a numeric vector
A.46 a numeric vector
A.47 anumeric vector
A.48 a numeric vector
A.49 a numeric vector
A.50 a numeric vector
A.51 anumeric vector
A.52 a numeric vector
A.53 a numeric vector
A.54 anumeric vector
A.55 anumeric vector
A.56 anumeric vector
A.57 anumeric vector

spam Factor w/ 2 levels "email", "spam"

27
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Details

The "spam" concept is diverse: advertisements for products/web sites, make money fast schemes,
chain letters, pornography... Our collection of spam e-mails came from our postmaster and individ-
uals who had filed spam. Our collection of non-spam e-mails came from filed work and personal
e-mails, and hence the word ’george’ and the area code *650’ are indicators of non-spam. These are
useful when constructing a personalized spam filter. One would either have to blind such non-spam
indicators or get a very wide collection of non-spam to generate a general purpose spam filter.

For background on spam: Cranor, Lorrie F., LaMacchia, Brian A. Spam! Communications of the
ACM, 41(8):74-83, 1998.

Attribute Information: The last column of ’spambase.data’ denotes whether the e-mail was consid-
ered spam (1) or not (0), i.e. unsolicited commercial e-mail. Most of the attributes indicate whether
a particular word or character was frequently occuring in the e-mail. The run-length attributes (55-
57) measure the length of sequences of consecutive capital letters. For the statistical measures of
each attribute, see the end of this file. Here are the definitions of the attributes:

48 continuous real [0,100] attributes of type word\_freq\_WORD = percentage of words in the e-
mail that match WORD, i.e. 100 * (number of times the WORD appears in the e-mail) / total
number of words in e-mail. A "word" in this case is any string of alphanumeric characters bounded
by non-alphanumeric characters or end-of-string.

6 continuous real [0,100] attributes of type char\_freq\_CHAR = percentage of characters in the
e-mail that match CHAR, i.e. 100 * (number of CHAR occurences) / total characters in e-mail

1 continuous real [1,...] attribute of type capital\_run\_length\_average = average length of uninter-
rupted sequences of capital letters

1 continuous integer [1,...] attribute of type capital\_run\_length\_longest = length of longest unin-
terrupted sequence of capital letters

1 continuous integer [1,...] attribute of type capital\_run\_length\_total = sum of length of uninter-
rupted sequences of capital letters = total number of capital letters in the e-mail

1 nominal {0,1} class attribute of type spam = denotes whether the e-mail was considered spam (1)
or not (0), i.e. unsolicited commercial e-mail.

Source

(a) Creators: Mark Hopkins, Erik Reeber, George Forman, Jaap Suermondt Hewlett-Packard Labs,
1501 Page Mill Rd., Palo Alto, CA 94304 (b) Donor: George Forman (gforman at nospam hpl.hp.com)
650-857-7835 (c) Generated: June-July 1999

References

http://www.ics.uci.edu/~mlearn/MLRepository.html

Examples

head(str(spam))

## Not run:

if(require(prim)){ # This uses too much time!
X <- spam[,1:57]
Y <- ifelse(spam$spam=="spam”, 1, 0)
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spam.priml <- prim.box(X, Y, threshold.type=1, verbose=TRUE)
summary (spam.priml)
} # use of prim package.

## End(Not run)
# The following example uses too much time and must be put inside a
# dontrun construction. Also summary(spam.earth) killed the R process
# ...
## Not run:
if(require(earth)){
spam.earth <- earth(spam[, 1:57], spam$spam,
glm=list(family=binomial),
trace=1, keepxy=TRUE, degree=1, nfold=10)
summary (spam.earth)
} # use of earth package

## End(Not run) # end of dontrun block
if(require(mda)){
spam.mars <- mars(spam[, 1:57],
ifelse(spam$spam=="spam", 1, @),
degree=1, nk=50, trace.mars=TRUE)
summary (spam.mars)
} # end require(mda) block

vowel. test Vowel Recognition (Deterding data)

Description
Speaker independent recognition of the eleven steady state vowels of British English using a speci-
fied training set of Ipc derived log area ratios.

Usage

data(vowel.test)

Format

A data frame with 462 observations on the following 11 variables.
y a numeric vector
x.1 anumeric vector

a numeric vector

a numeric vector

2
3

X.4 anumeric vector
5 a numeric vector
6

a numeric vector
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X.7 anumeric vector
X.8 anumeric vector
X.9 anumeric vector

X.10 anumeric vector

Details

See the Details section of the help file for vowel.train.

Source
David Deterding (data and non-connectionist analysis) Mahesan Niranjan (first connectionist anal-
ysis) Tony Robinson (description, program, data, and results)

References

neural-bench@cs.cmu.edu

Examples

str(vowel.test)

vowel.train Vowel Recognition (Deterding data)

Description

Speaker independent recognition of the eleven steady state vowels of British English using a speci-
fied training set of Ipc derived log area ratios.

Usage

data(vowel.train)

Format
A data frame with 528 observations on the following 11 variables.

y anumeric vector

x.1 a numeric vector
X.2 a numeric vector
x.3 a numeric vector
x.4 a numeric vector
X.5 a numeric vector

X.6 a numeric vector
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Xx.7 anumeric vector
x.8 a numeric vector
x.9 a numeric vector

x.10 a numeric vector

Details

For a more detailed explanation of the problem, see the excerpt from Tony Robinson’s Ph.D. thesis
in the COMMENTS section. In Robinson’s opinion, connectionist problems fall into two classes,
the possible and the impossible. He is interested in the latter, by which he means problems that have
no exact solution. Thus the problem here is not to see how fast a network can be trained (although
this is important), but to maximise a less than perfect performance.

METHODOLOGY:

Report the number of test vowels classified correctly, (i.e. the number of occurences when distance
of the correct output to the actual output was the smallest of the set of distances from the actual
output to all possible target outputs).

Though this is not the focus of Robinson’s study, it would also be useful to report how long the
training took (measured in pattern presentations or with a rough count of floating-point operations
required) and what level of success was achieved on the training and testing data after various
amounts of training. Of course, the network topology and algorithm used should be precisely
described as well.

VARIATIONS:

This benchmark is proposed to encourage the exploration of different node types. Please theo-
rise/experiment/hack. The author (Robinson) will try to correspond by email if requested. In par-
ticular there has been some discussion recently on the use of a cross-entropy distance measure, and
it would be interesting to see results for that.

RESULTS:

Here is a summary of results obtained by Tony Robinson. A more complete explanation of this data
is given in the exceprt from his thesis in the COMMENTS section below.

B et et L tom B ettt tomm +
| | no. of | no. | percent |

| Classifier | hidden | correct | correct |
| | units | | |

B e e T T e tom e it tomm +
| Single-layer perceptron | - | 154 | 33 |
| Multi-layer perceptron | 88 | 234 | 51 |
| Multi-layer perceptron | 22 | 206 | 45 |
| Multi-layer perceptron | 11 | 203 | 44

| Modified Kanerva Model | 528 | 231 | 50 |
| Modified Kanerva Model | 88 | 197 | 43 |
| Radial Basis Function | 528 | 247 | 53 |
| Radial Basis Function | 88 | 220 | 48 |
| Gaussian node network | 528 | 252 | 55 |
| Gaussian node network | 88 | 247 | 53 |
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| Gaussian node network | 22 | 250 | 54 |
| Gaussian node network | 11 | 211 | 47 |
| Square node network | 88 | 253 | 55 |
| Square node network | 22 | 236 | 51 |
| Square node network | 11 | 217 | 50 |
| Nearest neighbour | - | 260 | 56 |
B e T e e o Fom o +
Notes:

1. Each of these numbers is based on a single trial with random starting weights. More trials would
of course be preferable, but the computational facilities available to Robinson were limited.

2. Graphs are given in Robinson’s thesis showing test-set performance vs. epoch count for some of
the training runs. In most cases, performance peaks at around 250 correct, after which performance
decays to different degrees. The numbers given above are final performance figures after about
3000 trials, not the peak performance obtained during the run.

REFERENCES:
[Deterding89] D. H. Deterding, 1989, University of Cambridge, "Speaker Normalisation for Auto-
matic Speech Recognition", submitted for PhD.

[NiranjanFallside88] M. Niranjan and F. Fallside, 1988, Cambridge University Engineering De-
partment, "Neural Networks and Radial Basis Functions in Classifying Static Speech Patterns",
CUED/F-INFENG/TR.22.

[RenalsRohwer89-ijcnn] Steve Renals and Richard Rohwer, "Phoneme Classification Experiments
Using Radial Basis Functions", Submitted to the International Joint Conference on Neural Net-
works, Washington, 1989.

[RabinerSchafer78] L. R. Rabiner and R. W. Schafer, Englewood Cliffs, New Jersey, 1978, Prentice
Hall, "Digital Processing of Speech Signals".

[PragerFallside88] R. W. Prager and F. Fallside, 1988, Cambridge University Engineering Depart-
ment, "The Modified Kanerva Model for Automatic Speech Recognition", CUED/F-INFENG/TR.6.

[BroomheadLowe88] D. Broomhead and D. Lowe, 1988, Royal Signals and Radar Establishment,
Malvern, "Multi-variable Interpolation and Adaptive Networks", RSRE memo, \#4148.

[RobinsonNiranjanFallside88-tr] A. J. Robinson and M. Niranjan and F. Fallside, 1988, Cambridge
University Engineering Department, "Generalising the Nodes of the Error Propagation Network",
CUED/F-INFENG/TR.25.

[Robinson89] A. J. Robinson, 1989, Cambridge University Engineering Department, "Dynamic
Error Propagation Networks".

[McCullochAinsworth88] N. McCulloch and W. A. Ainsworth, Proceedings of Speech’88, Edin-
burgh, 1988, "Speaker Independent Vowel Recognition using a Multi-Layer Perceptron".
[RobinsonFallside88-neuro] A. J. Robinson and F. Fallside, 1988, Proceedings of nEuro’88, Paris,
June, "A Dynamic Connectionist Model for Phoneme Recognition.

COMMENTS:

(By Tony Robinson)

The program supplied is slow. I ran it on several MicroVaxII’s for many nights. I suspect that if 1
had spent more time on it, it would have been possible to get better results. Indeed, my later code has
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a slightly better adaptive step size algotithm, but the old version is given here for comatability with
the stated performance values. It is interesting that, for this problem, the nearest neighbour clasifi-
cation outperforms any of the connectionist models. This can be seen as a challange to improve the
connectionist performance.

The following problem description results and discussion is taken from my PhD thesis. The aim
was to demonstrate that many types of node can be trained using gradient descent. The full thesis
will be available from me when it has been examined, say maybe July 1989.

Application to Vowel Recognition

This chapter describes the application of a variety of feed-forward networks to the task of recogni-
tion of vowel sounds from multiple speakers. Single speaker vowel recognition studies by Renals
and Rohwer [RenalsRohwer89-ijcnn] show that feed-forward networks compare favourably with
vector-quantised hidden Markov models. The vowel data used in this chapter was collected by De-
terding [Deterding89], who recorded examples of the eleven steady state vowels of English spoken
by fifteen speakers for a speaker normalisation study. A range of node types are used, as described
in the previous section, and some of the problems of the error propagation algorithm are discussed.

The Speech Data

(An ascii approximation to) the International Phonetic Association (I.P.A.) symbol and the word in
which the eleven vowel sounds were recorded is given in table 4.1. The word was uttered once by
each of the fifteen speakers. Four male and four female speakers were used to train the networks,
and the other four male and three female speakers were used for testing the performance.

to————— tomm————— to————— tomm +
| vowel | word | vowel | word |
Fmm e R o e +
| i | heed | O |  hod |
| I | hid | C: | hoard |
| E | head | U | hood |
| A | bhad | u: | who'd |
| a: | hard | 3: | heard |
| Y | hud | I |
to————— tomm————— to————— Fomm +

Table 4.1: Words used in Recording the Vowels
Front End Analysis

The speech signals were low pass filtered at 4.7kHz and then digitised to 12 bits with a 10kHz sam-
pling rate. Twelfth order linear predictive analysis was carried out on six 512 sample Hamming win-
dowed segments from the steady part of the vowel. The reflection coefficients were used to calculate
10 log area parameters, giving a 10 dimensional input space. For a general introduction to speech
processing and an explanation of this technique see Rabiner and Schafer [RabinerSchafer78].

Each speaker thus yielded six frames of speech from eleven vowels. This gave 528 frames from the
eight speakers used to train the networks and 462 frames from the seven speakers used to test the
networks.

Details of the Models

All the models had common structure of one layer of hidden units and two layers of weights. Some
of the models used fixed weights in the first layer to perform a dimensionality expansion [Robin-
son89:sect3.1], and the remainder modified the first layer of weights using the error propagation
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algorithm for general nodes described in [Robinson89:chap2]. In the second layer the hidden units
were mapped onto the outputs using the conventional weighted-sum type nodes with a linear acti-
vation function. When Gaussian nodes were used the range of influence of the nodes, w;;1, was set
to the standard deviation of the training data for the appropriate input dimension. If the locations
of these nodes, w;;o, are placed randomly, then the model behaves like a continuous version of the
modified Kanerva model [PragerFallside88]. If the locations are placed at the points defined by
the input examples then the model implements a radial basis function [BroomheadLowe88]. The
first layer of weights remains constant in both of these models, but can be also trained using the
equations of [Robinson89:sect2.4]. Replacing the Gaussian nodes with the conventional type gives
a multilayer perceptron and replacing them with conventional nodes with the activation function
f(x) = 22 gives a network of square nodes. Finally, dispensing with the first layer altogether yields
a single layer perceptron.

The scaling factor between gradient of the energy and the change made to the weights (the ‘learn-
ing rate’, ‘eta’) was dynamically varied during training, as described in [Robinson89:sect2.5]. If
the energy decreased this factor was increased by 5%, if it increased the factor was halved. The
networks changed the weights in the direction of steepest descent which is susceptible to finding a
local minimum. A ‘momentum’ term [RumelhartHintonWilliams86] is often used with error prop-
agation networks to smooth the weight changes and ‘ride over’ small local minima. However, the
optimal value of this term is likely to be problem dependent, and in order to provide a uniform
framework, this additional term was not used.

Recognition Results

This experiment was originally carried out with only two frames of data from each word [RobinsonNiranjanFallside88-

tr]. In the earlier experiment some problems were encountered with a phenomena termed ‘over-
training’ whereby the recognition rate on the test data peaks part way through training then decays
significantly. The recognition rates for the six frames per word case are given in table 4.2 and
are generally higher and show less variability than the previously presented results. However, the
recognition rate on the test set still displays large fluctuations during training, as shown by the plots
in [Robinson89:fig3.2] Some fluctuations will arise from the fact that the minimum in weight space
for the training set will not be coincident with the minima for the test set. Thus, half the possible
trajectories during learning will approach the test set minimum and then move away from it again on
the way to the training set minima [Mark Plumbley, personal communication]. In addition, contin-
ued training sharpens the class boundaries which makes the energy insensitive to the class boundary
position [Mahesan Niranjan, personal communiation]. For example, there are a large number planes
defined with threshold units which will separate two points in the input space, but only one least
squares solution for the case of linear units.

e Fom e it tommm +
| | no. of | no. | percent |

| Classifier | hidden | correct | correct |
| | units | | |

e o Fo——— - Fo—— - +
| Single-layer perceptron | - | 154 | 33 |
| Multi-layer perceptron | 88 | 234 | 51 |
| Multi-layer perceptron | 22 | 206 | 45 |
| Multi-layer perceptron | 11 | 203 | 44

| Modified Kanerva Model | 528 | 231 | 50 |
| Modified Kanerva Model | 88 | 197 | 43 |
| Radial Basis Function | 528 | 247 | 53 |
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| Radial Basis Function | 88 | 220 | 48 |
| Gaussian node network | 528 | 252 | 55 |
| Gaussian node network | 88 | 247 | 53 |
| Gaussian node network | 22 | 250 | 54 |
| Gaussian node network | 11 | 211 | 47

| Square node network | 88 | 253 | 55 |
| Square node network | 22 | 236 | 51 |
| Square node network | 11 | 217 | 50

| Nearest neighbour | - | 260 | 56

B e ittt Fom e et tomm +

Table 4.2: Vowel classification with different non-linear classifiers
Discussion

From these vowel classification results it can be seen that minimising the least mean square error
over a training set does not guarantee good generalisation to the test set. The best results were
achieved with nearest neighbour analysis which classifies an item as the class of the closest exam-
ple in the training set measured using the Euclidean distance. It is expected that the problem of
overtraining could be overcome by using a larger training set taking data from more speakers. The
performance of the Gaussian and square node network was generally better than that of the multi-
layer perceptron. In other speech recognition problems which attempt to classify single frames of
speech, such as those described by McCulloch and Ainsworth [McCullochAinsworth88] and that
of [Robinson89:chap7 and RobinsonFallside88-neuro], the nearest neighbour algorithm does not
perform as well as a multilayer perceptron. It would be interesting to investigate this difference and
apply a network of Gaussian or square nodes to these problems.

The initial weights to the hidden units in the Gaussian network can be given a physical interpretation
in terms of matching to a template for a set of features. This gives an advantage both in shortening
the training time and also because the network starts at a point in weight space near a likely solution,
which avoids some possible local minima which represent poor solutions.

The results of the experiments with Gaussian and square nodes are promising. However, it has not
been the aim of this chapter to show that a particular type of node is necessarily ‘better’ for error
propagation networks than the weighted sum node, but that the error propagation algorithm can be
applied successfully to many different types of node.

Source

David Deterding (data and non-connectionist analysis) Mahesan Niranjan (first connectionist anal-
ysis) Tony Robinson (description, program, data, and results)

References

neural-bench@cs.cmu.edu

Examples

str(vowel.train)
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waveform Function to simulate waveform data

Description

Simulates waveform data, as in the book page 402.

Usage

waveform(n)

Arguments

n Number of waveforms to simulate

Details

The formulas are given in the book page 402.

Value

Dataframe with two variables, x, a matrix with 21 columns, and a vector y with class labels.

Author(s)

Kjetil Halvorsen

See Also

waveform.train and waveform.test.

waveform. test Simulated Waveform Data

Description
This is a simulated three-class problem with 21 variables, and considered to be a difficult pattern
recognition problem.

Usage

data(waveform. test)



waveform.train

Format

A data frame with 500 observations on the following 22 variables.

y anumeric vector

x.1

x
© 00 N O O ~ W N

x.10
x. 11
x.12
x.13
x.14
x.15
x.16
x.17
x.18
x.19
X.20
x. 21

a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector

a numeric vector

Examples

str(waveform. test)
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waveform.train

Simulated Waveform Data

Description

This is a simulated three-class problem with 21 variables, and considered to be a difficult pattern
recognition problem.

Usage

data(waveform.train)
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Format

A data frame with 300 observations on the following 22 variables.

y anumeric vector
x.1 a numeric vector
X.2 a numeric vector
x.3 a numeric vector
x.4 a numeric vector
X.5 a numeric vector
X.6 a numeric vector
X.7 a numeric vector
Xx.8 a numeric vector
X.9 a numeric vector
x.10 a numeric vector
x.11 a numeric vector
x.12 a numeric vector
x.13 a numeric vector
x.14 a numeric vector
x.15 a numeric vector
x.16 a numeric vector
x.17 a numeric vector
x.18 a numeric vector
x.19 a numeric vector
x.20 a numeric vector

x.21 a numeric vector

Examples

str(waveform.train)

zip.test Handwritten Digit Recognition Data

Description

This example is a character recognition task: classification of handwritten numerals. This problem
captured the attention of the machine learning and neural network community for many years, and
has remained a benchmark problem in the field.
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Usage

data(zip.test)

Format

The format is: num [1:2007, 1:257]9636 600069 ...

Details

Normalized handwritten digits, automatically scanned from envelopes by the U.S. Postal Service.
The original scanned digits are binary and of different sizes and orientations; the images here have
been deslanted and size normalized, resulting in 16 x 16 grayscale images (Le Cun et al., 1990).

The data are in two gzipped files, and each line consists of the digit id (0-9) followed by the 256
grayscale values.

There are 7291 training observations and 2007 test observations, distributed as follows: 01234 5
6 7 8 9 Total Train 1194 1005 731 658 652 556 664 645 542 644 7291 Test 359 264 198 166 200
160 170 147 166 177 2007

or as proportions: 01234567 89 Train 0.16 0.14 0.1 0.09 0.09 0.08 0.09 0.09 0.07 0.09 Test
0.18 0.13 0.1 0.08 0.10 0.08 0.08 0.07 0.08 0.09

The test set is notoriously "difficult", and a 2.5 excellent. These data were kindly made available by
the neural network group at AT&T research labs (thanks to Yann Le Cunn).

zip.train Handwritten Digit Recognition Data

Description

This example is a character recognition task: classification of handwritten numerals. This problem
captured the attention of the machine learning and neural network community for many years, and
has remained a benchmark problem in the field.

Usage

data(zip.train)

Format

The format is: num [1:7291, 1:257]16547363101 ...
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Details

Normalized handwritten digits, automatically scanned from envelopes by the U.S. Postal Service.
The original scanned digits are binary and of different sizes and orientations; the images here have
been deslanted and size normalized, resulting in 16 x 16 grayscale images (Le Cun et al., 1990).

The data are in two gzipped files, and each line consists of the digit id (0-9) followed by the 256
grayscale values.

There are 7291 training observations and 2007 test observations, distributed as follows: 0 1 23 4 5
6 7 8 9 Total Train 1194 1005 731 658 652 556 664 645 542 644 7291 Test 359 264 198 166 200
160 170 147 166 177 2007

or as proportions: 01234567 89 Train 0.16 0.14 0.1 0.09 0.09 0.08 0.09 0.09 0.07 0.09 Test
0.180.13 0.1 0.08 0.10 0.08 0.08 0.07 0.08 0.09

The test set is notoriously "difficult", and a 2.5 excellent. These data were kindly made available by
the neural network group at AT&T research labs (thanks to Yann Le Cunn).

Examples

findRows <- function(zip, n) {
# Find n (random) rows with zip representing 0,1,2,...,9
res <- vector(length=10, mode="1list")
names(res) <- 0:9
ind <- zip[,1]
for (j in 0:9) {
res[[j+1]] <- sample( which(ind==j), n ) }
return(res) }

# Making a plot like that on page 4:

digits <- vector(length=10, mode="list")

names(digits) <- 0:9

rows <- findRows(zip.train, 6)

for (j in 0:9)

digits[[j+1]] <- do.call("cbind"”, lapply(as.list(rows[[j+1]]),

function(x) zip2image(zip.train, x)) )

3

im <- do.call("rbind”, digits)

image(im, col=gray(256:0/256), zlim=c(@,1), xlab="", ylab="" )

zip2image function to convert row of zip file to format used by image()

Description
This is a utility function converting zip.train/zip.test data to format useful for plotting with the
function image.

Usage

zip2image(zip, line)



zip2image

Arguments
zip zip.trainor zip. test.
line row of matrix to take
Value

16 x 16 matrix suitable as argument for image.

Author(s)

Kjetil Halvorsen

Examples

## See example section of help file for zip.train

41
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