Package ‘adnuts’

April 4, 2019
Title No-U-Turn MCMC Sampling for 'ADMB' and "'TMB' Models
Version 1.0.1

Description Bayesian inference using the no-U-turn (NUTS) algorithm by
Hoffman and Gelman (2014) <http://www.jmlr.org/papers/v15/hoffmanl4a.html>.
Designed for 'AD Model Builder' CADMB') models,
or when R functions for log-density and log-density gradient
are available, such as "Template Model Builder' ('TMB')
models and other special cases. Functionality is similar to 'Stan',
and the 'rstan' and 'shinystan' packages are used for diagnostics and
inference.

Depends R (>=3.3.0)
URL https://github.com/colemonnahan/adnuts

BugReports https://github.com/colemonnahan/adnuts/issues
License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

ByteCompile true

Suggests snowfall (>= 1.84.6.1), shinystan (>= 2.5.0), matrixcalc (>=
1.0.3), TMB (>= 1.7.15), stats, knitr, rmarkdown

Imports ellipse, rstan, R2admb
VignetteBuilder knitr

NeedsCompilation no

Author Cole Monnahan [aut, cre]

Maintainer Cole Monnahan <monnahc@uw.edu>
Repository CRAN

Date/Publication 2019-04-04 20:10:04 UTC

https://github.com/colemonnahan/adnuts
https://github.com/colemonnahan/adnuts/issues

2 .getADMBHessian

R topics documented:
.getADMBHessian oL 2
adnuts L e e e 3
check identifiable e 4
extract_sampler_params e e e e e e e e 4
extract_samples e e e e e e 5
launch_shinyadmb 6
launch_shinytmb 7
pairs_admb 7
sample_admb 8
sample_admb_nuts 10
sample_admb_rwm 11
sample_inits L. 12
sample_tmb 12
sample_tmb_hmc L 15
sample_tmb_nuts 16
sample_tmb_rwm 17

Index 19

.getADMBHessian Read in admodel.hes file
Description

Read in admodel.hes file

Usage

.getADMBHessian(path)

Arguments

path

Value

Path to folder containing the admodel.hes file

The Hessian matrix

adnuts 3

adnuts adnuts: No-U-turn sampling for Template Model Builder and AD
Model Builder

Description

Draw Bayesian posterior samples from a TMB or ADMB model using the no-U-turn MCMC sam-
pler. Adaptation schemes are used so specifying tuning parameters is not necessary, and parallel
execution reduces overall run time.

Details

The software package Stan pioneered the use of no-U-turn (NUTS) sampling for Bayesian models
(Hoffman and Gelman 2014, Carpenter et al. 2017). This algorithm provides fast, efficient sampling
across a wide range of models, including hierarchical ones, and thus can be used as a generic
modeling tool (Monnahan et al. 2017). The functionality provided by adnuts is based loosely off
Stan and R package rstan

adnuts R package provides NUTS sampling for two existing software platforms: ADMB (Fournier
et al. 2011) and TMB (Kristensen et al. 2017, Kristensen 2017). The specific NUTS capabilities
include adaptation of step size and metric (mass matrix), parallel execution, and links to diagnostic
and inference tools provided by rstan and shinystan.

For TMB models, adnuts provides NUTS and other MCMC algorithms written in R. These can be
used with a TMB model by plugging in the obj$fn and obj$gr functions from the DLL directly. It
is possible to use these functions with models outside TMB, as long as the log density and gradients
can be calculated. See sample_tmb for more details.

The ADMB implementation is different in that the NUTS code is bundled into the ADMB source
itself. Thus, when a user builds an ADMB model the NUTS code is incorporated into the model
executable. Thus, adnuts simply provides a convenient set of wrappers to more easily execute,
diagnose, and make inference on a model.

References

Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Riddell, A.,
Guo, J.Q., Li, P, Riddell, A., 2017. Stan: A Probabilistic Programming Language. J Stat Softw.
76:1-29.

Fournier, D.A., Skaug, H.J., Ancheta, J., lanelli, J., Magnusson, A., Maunder, M.N., Nielsen, A.,
Sibert, J., 2012. AD Model Builder: using automatic differentiation for statistical inference of
highly parameterized complex nonlinear models. Optim Method Softw. 27:233-249.

Hoffman, M.D., Gelman, A., 2014. The no-U-turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. J Mach Learn Res. 15:1593-1623.

Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., Bell, B.M., 2016. TMB: Automatic differentia-
tion and Laplace approximation. J Stat Softw. 70:21.

Kristensen, K., 2017. TMB: General random effect model builder tool inspired by ADMB. R
package version 1.7.11.

4 extract_sampler_params

Monnahan, C.C., Thorson, J.T., Branch, T.A., 2017. Faster estimation of Bayesian models in ecol-
ogy using Hamiltonian Monte Carlo. Methods in Ecology and Evolution. 8:339-348.

Stan Development Team, 2016. Stan modeling language users guide and reference manual, version
2.11.0.

Stan Development Team, 2016. RStan: The R interface to Stan. R package version 2.14.1.
http://mc-stan.org.

check_identifiable Check identifiability from model Hessian

Description

Check identifiability from model Hessian

Usage
check_identifiable(model, path = getwd())

Arguments

model Model name without file extension

path Path to model folder, defaults to working directory
Details

Read in the admodel.hes file and check the eigenvalues to determine which parameters are not
identifiable and thus cause the Hessian to be non-invertible. Use this to identify which parameters
are problematic. This function was converted from a version in the FishStatsUtils package.

Value

Prints output of bad parameters and invisibly returns it.

extract_sampler_params
Extract sampler parameters from a fit.

Description
Extract information about NUTS trajectories, such as acceptance ratio and treedepth, from a fitted
object.

Usage

extract_sampler_params(fit, inc_warmup = FALSE)

extract_samples 5

Arguments
fit A list returned by sample_admb or sample_tmb.
inc_warmup Whether to extract the warmup samples or not (default). Warmup samples
should never be used for inference, but may be useful for diagnostics.
Details

Each trajectory (iteration) in NUTS has associated information about the trajectory: stepsize, accep-
tance ratio, treedepth, and number of leapfrog steps. This function extracts these into a data.frame,
which may be useful for diagnosing issues in certain cases. In general, the user should not need to
examine them, or preferably should via launch_shinytmb or launch_shinyadmb.

Value

An invisible data.frame containing samples (rows) of each parameter (columns). If multiple chains
exist they will be rbinded together.

See Also

launch_shinytmb and launch_shinyadmb.

Examples

fit <- readRDS(system.file('examples', 'fit_tmb.RDS', package='adnuts'))

Examine how step size and treedepth changes as the mass matrix updates

during warmup

sp <- extract_sampler_params(fit, inc_warmup=TRUE)

plot(0,0, type='n', xlim=c(0,510), ylim=c(9,3), xlab='Iteration',
ylab="Step size (eps)')

for(i in 1:3) lines(1:1000, sp[sp$chain==i,4], col=i)

legend('topright', cex=.7, legend=paste("”chain1”, 1:3), lty=1, col=1:3)

plot(@,0, type='n', x1im=c(0,1000), ylim=c(@,10), xlab='Iteration',
ylab="Treedepth')

for(i in 1:3) lines(1:1000, sp[sp$chain==i,5], col=i)

legend('topright', cex=.7, legend=paste(”chain1”, 1:3), lty=1, col=1:3)

extract_samples Extract posterior samples from a model fit.

Description

A helper function to extract posterior samples across multiple chains into a single data.frame.

Usage

extract_samples(fit, inc_warmup = FALSE, inc_lp = FALSE,
as.list = FALSE)

6 launch_shinyadmb

Arguments
fit A list returned by sample_tmb or sample_admb.
inc_warmup Whether to extract the warmup samples or not (default). Warmup samples
should never be used for inference, but may be useful for diagnostics.
inc_lp Whether to include a column for the log posterior density (last column). For
diagnostics it can be useful.
as.list Whether to return the samples as a list (one element per chain). This could then
be converted to a CODA mcmc object.
Details

This function is loosely based on the rstan function extract. Merging samples across chains
should only be used for inference after appropriate diagnostic checks. Do not calculate diagnostics
like Rhat or effective sample size after using this function, instead, use monitor. Likewise, warmup
samples are not valid and should never be used for inference, but may be useful in some cases for
diagnosing issues.

Value

If as.list is FALSE, an invisible data.frame containing samples (rows) of each parameter (columns).
If multiple chains exist they will be rbinded together, maintaining order within each chain. If as.list
is TRUE, samples are returned as a list of matrices.

Examples

A previously run fitted TMB model

fit <- readRDS(system.file('examples', 'fit_tmb.RDS', package='adnuts'))
post <- extract_samples(fit)

tail(apply(post, 2, median))

launch_shinyadmb Launch shinystan for an ADMB fit.

Description

Launch shinystan for an ADMB fit.

Usage
launch_shinyadmb(fit)

Arguments

fit A named list returned by sample_admb.

See Also

launch_shinytmb

launch_shinytmb 7

launch_shinytmb Launch shinystan for a TMB fit.

Description

Launch shinystan for a TMB fit.

Usage
launch_shinytmb(fit)

Arguments

fit A named list returned by sample_tmb.

See Also

launch_shinyadmb

pairs_admb Plot pairwise parameter posteriors and optionally the MLE points and
confidence ellipses.

Description

Plot pairwise parameter posteriors and optionally the MLE points and confidence ellipses.

Usage

pairs_admb(fit, diag = c("trace", "acf”, "hist"), acf.ylim = c(-1, 1),
ymult = NULL, axis.col = gray(@.5), pars = NULL, label.cex = 0.5,

limits = NULL, ...)
Arguments
fit A list as returned by sample_admb.
diag What type of plot to include on the diagonal, options are ’acf’ which plots the

autocorrelation function acf, "hist’ shows marginal posterior histograms, and
’trace’ the trace plot.

acf.ylim If using the acf function on the diagonal, specify the y limit. The default is
c(-1,1).
ymult A vector of length ncol(posterior) specifying how much room to give when using

the hist option for the diagonal. For use if the label is blocking part of the plot.
The default is 1.3 for all parameters.

axis.col Color of axes

8 sample_admb

pars A vector of parameter names or integers representing which parameters to sub-
set. Useful if the model has a larger number of parameters and you just want to
show a few key ones.

label.cex Control size of labels
limits A list containing the ranges for each parameter to use in plotting.

Arguments to be passed to plot call in lower diagonal panels

Value

Produces a plot, and returns nothing.

Author(s)

Cole Monnahan

Examples

fit <- readRDS(system.file('examples', 'fit_admb.RDS', package='adnuts'))
pairs_admb(fit)

sample_admb Bayesian inference of an ADMB model using the no-U-turn sampler.

Description

Draw Bayesian posterior samples from an AD Model Builder (ADMB) model using an MCMC al-
gorithm. This function generates posterior samples from which inference can be made. Adaptation
schemes are used so specifying tuning parameters is not necessary, and parallel execution reduces
overall run time.

Usage

sample_admb(model, path = getwd(), iter = 2000, init = NULL,
chains = 3, warmup = NULL, seeds = NULL, thin =1,
mceval = FALSE, duration = NULL, parallel = FALSE, cores = NULL,

control = NULL, algorithm = "NUTS", ...)
Arguments
model Name of model (i.e., model.tpl)
path Path to model executable. Defaults to working directory. Often best to have

model files in a separate subdirectory, particularly for parallel.

iter The number of samples to draw.

sample_admb 9

init A list of lists containing the initial parameter vectors, one for each chain or a
function. It is strongly recommended to initialize multiple chains from dispersed
points. A of NULL signifies to use the starting values present in the model (i.e.,

obj$par) for all chains.
chains The number of chains to run.
warmup The number of warmup iterations.
seeds A vector of seeds, one for each chain.
thin The thinning rate to apply to samples. Typically not used with NUTS.
mceval Whether to run the model with -mceval on samples from merged chains.
duration The number of minutes after which the model will quit running.
parallel A boolean for whether to use parallel cores. The package snowfall is used if
TRUE.
cores The number of cores to use for parallel execution.
control A list to control the sampler. See details for further use.
algorithm Which algorithm to use, either "NUTS" or "RWM".

Further arguments to be passed to the algorithm. See help files for the samplers
for further arguments.

Details

This function implements algorithm 6 of Hoffman and Gelman (2014), and loosely follows package
rstan. The step size can be adapted or specified manually. The metric (i.e., mass matrix) can be
unit diagonal, adapted diagonal (default and recommended), or a dense matrix specified by the user.
Further control of algorithms can be specified with the control argument. Elements are:
adapt_delta The target acceptance rate. D

metric The mass metric to use. Options are: "unit" for a unit diagonal matrix; NULL to estimate a
diagonal matrix during warmup; a matrix to be used directly (in untransformed space).

adapt_delta Whether adaptation of step size is turned on.

adapt_mass Whether adaptation of mass matrix is turned on. Currently only allowed for diagonal
metric.

max_treedepth Maximum treedepth for the NUTS algorithm.
stepsize The stepsize for the NUTS algorithm. If NULL it will be adapted during warmup.

Warning

The user is responsible for specifying the model properly (priors, starting values, desired parameters
fixed, etc.), as well as assessing the convergence and validity of the resulting samples (e.g., through
the coda package), or with function launch_shinytmb before making inference. Specifically, priors
must be specified in the template file for each parameter. Unspecified priors will be implicitly
uniform.

Author(s)

Cole Monnahan

10 sample_admb_nuts

Examples
Not run:
This is the packaged simple regression model
path.simple <- system.file('examples', 'simple', package='adnuts')

It is best to have your ADMB files in a separate folder and provide that
path, so make a copy of the model folder locally.

path <- 'simple'

dir.create(path)

trash <- file.copy(from=list.files(path.simple, full.names=TRUE), to=path)
Compile and run model

oldwd <- getwd()

setwd(path)

system('admb simple.tpl')

system('simple')

setwd('..")

init <- function() rnorm(2)

Run NUTS with defaults

fit <- sample_admb(model='simple', init=init, path=path)

unlink(path, TRUE) # cleanup folder

setwd(oldwd)

End(Not run)

sample_admb_nuts Run a single NUTS chain for an ADMB model

Description

A low level function to run a single chain. Unlikely to be used by a user, instead prefer sample_admb

Usage

sample_admb_nuts(path, model, iter = 2000, init = NULL, chain =1,
thin = 1, warmup = NULL, seed = NULL, duration = NULL,
control = NULL, verbose = TRUE, extra.args = NULL)

Arguments
path Path to model executable. Defaults to working directory. Often best to have
model files in a separate subdirectory, particularly for parallel.
model Name of model (i.e., model.tpl)
iter The number of samples to draw.
init A list of lists containing the initial parameter vectors, one for each chain or a

function. It is strongly recommended to initialize multiple chains from dispersed
points. A of NULL signifies to use the starting values present in the model (i.e.,
obj$par) for all chains.

sample_admb_rwm 11

chain Chain number, for printing purposes only.

thin The thinning rate to apply to samples. Typically not used with NUTS.

warmup The number of warmup iterations.

seed Random seed to use.

duration The number of minutes after which the model will quit running.

control A list to control the sampler. See details for further use.

verbose Boolean for whether to print ADMB output to console.

extra.args Character string of extra command line argument to pass to ADMB.
See Also

sample_admb

sample_admb_rwm Run a single random walk Metropolis chain for an ADMB model

Description

A low level function to run a single chain. Unlikely to be used by a user, instead prefer sample_admb

Usage

sample_admb_rwm(path, model, iter = 2000, thin = 1,
warmup = ceiling(iter/2), init = NULL, chain = 1, seed = NULL,
control = NULL, verbose = TRUE, extra.args = NULL,
duration = NULL)

Arguments

path Path to model executable. Defaults to working directory. Often best to have
model files in a separate subdirectory, particularly for parallel.

model Name of model (i.e., model.tpl)

iter The number of samples to draw.

thin The thinning rate to apply to samples. Typically not used with NUTS.

warmup The number of warmup iterations.

init A list of lists containing the initial parameter vectors, one for each chain or a
function. Itis strongly recommended to initialize multiple chains from dispersed
points. A of NULL signifies to use the starting values present in the model (i.e.,
obj$par) for all chains.

chain Chain number, for printing purposes only.

seed Random seed to use.

control A list to control the sampler. See details for further use.

verbose Boolean for whether to print ADMB output to console.

extra.args Character string of extra command line argument to pass to ADMB.

duration The number of minutes after which the model will quit running.

12 sample_tmb

See Also

sample_admb

sample_inits Function to generate random initial values from a previous fit using
adnuts

Description

Function to generate random initial values from a previous fit using adnuts

Usage

sample_inits(fit, chains)

Arguments
fit An outputted list from sample_admb or sample_tmb
chains The number of chains for the subsequent run, which determines the number to
return.
Value

A list of lists which can be passed back into sample_admb.

sample_tmb Bayesian inference of a TMB model using the no-U-turn sampler.

Description

Draw Bayesian posterior samples from a Template Model Builder (TMB) model using an MCMC
algorithm. This function generates posterior samples from which inference can be made. Adapta-
tion schemes are used so specification tuning parameters are not necessary, and parallel execution
reduces overall run time.

Usage

sample_tmb(obj, iter = 2000, init, chains = 3, seeds = NULL,
warmup = floor(iter/2), lower = NULL, upper = NULL, thin =1,
parallel = FALSE, cores = NULL, path = NULL, algorithm = "NUTS",
laplace = FALSE, control = NULL, ...)

sample_tmb

Arguments
obj
iter

init

chains
seeds
warmup
lower
upper
thin
parallel

cores

path

algorithm

laplace

control

Details

13

A TMB model object.
The number of samples to draw.

A list of lists containing the initial parameter vectors, one for each chain or a
function. Itis strongly recommended to initialize multiple chains from dispersed
points. A of NULL signifies to use the starting values present in the model (i.e.,
obj$par) for all chains.

The number of chains to run.

A vector of seeds, one for each chain.

The number of warmup iterations.

A vector of lower bounds for parameters. Allowed values are -Inf and numeric.
A vector of upper bounds for parameters. Allowed values are Inf and numeric.
The thinning rate to apply to samples. Typically not used with NUTS.

A boolean for whether to use parallel cores. The package snowfall is used if
TRUE.

The number of cores to use for parallel execution.

The path to the TMB DLL. This is only required if using parallel, since each
core needs to link to the DLL again.

The algorithm to use. NUTS is the default and recommended one, but "RWM"
for the random walk Metropolis sampler and "HMC" for the static HMC sam-
pler are available. These last two are deprecated but may be of use in some
situations. These algorithms require different arguments; see their help files for
more information.

Whether to use the Laplace approximation if some parameters are declared as
random. Default is to turn off this functionality and integrate across all parame-
ters with MCMC.

A list to control the sampler. See details for further use.

Further arguments to be passed to the algorithm. See help files for the samplers
for further arguments.

This function implements algorithm 6 of Hoffman and Gelman (2014), and loosely follows package
rstan. The step size can be adapted or specified manually. The metric (i.e., mass matrix) can be
unit diagonal, adapted diagonal (default and recommended), or a dense matrix specified by the user.
Further control of algorithms can be specified with the control argument. Elements are:

adapt_delta The target acceptance rate.

metric The mass metric to use. Options are: "unit" for a unit diagonal matrix; "diag" to estimate a
diagonal matrix during warmup; a matrix to be used directly (in untransformed space).

adapt_engaged Whether adaptation of step size and metric is turned on.

max_treedepth Maximum treedepth for the NUTS algorithm.

stepsize The stepsize for the NUTS algorithm. If NULL it will be adapted during warmup.

14 sample_tmb

Value

A list containing the samples, and properties of the sampler useful for diagnosing behavior and
efficiency.

Warning

The user is responsible for specifying the model properly (priors, starting values, desired parameters
fixed, etc.), as well as assessing the convergence and validity of the resulting samples (e.g., through
the coda package), or with function launch_shinytmb before making inference. Specifically, priors
must be specified in the template file for each parameter. Unspecified priors will be implicitly
uniform.

Author(s)

Cole Monnahan

See Also

extract_samples to extract samples and launch_shinytmb to explore the results graphically
which is a wrapper for the launch_shinystan function.

Examples

Build a fake TMB object with objective & gradient functions and some
other flags
f <- function(x, order=0){
if(order != 1) # negative log density
-sum(dnorm(x=x, mean=0, sd=1, log=TRUE))
else x # gradient of negative log density
3
init <- function() rnorm(2)
obj <- list(env=list(DLL='demo', last.par.best=c(x=init()), f=f,
beSilent=function() NULL))
Run NUTS for this object
fit <- sample_tmb(obj, iter=1000, chains=3, init=init)
Check basic diagnostics
mon <- rstan::monitor(fit$samples, print=FALSE)
Rhat <- mon[,"Rhat"]

max (Rhat)

ess <- mon[, 'n_eff']

min(ess)

Or do it interactively with ShinyStan
Not run:

launch_shinytmb(fit)

End(Not run)

sample_tmb_hmc 15

sample_tmb_hmc Draw MCMC samples from a model posterior using a static HMUC
sampler.

Description

Draw MCMC samples from a model posterior using a static HMC sampler.

Usage

sample_tmb_hmc(iter, fn, gr, init, L, eps, warmup = floor(iter/2),
seed = NULL, chain = 1, thin = 1, control = NULL)

Arguments

iter The number of samples to draw.

fn A function that returns the log of the posterior density.

gr A function that returns a vector of gradients of the log of the posterior density
(same as fn).

init A list of lists containing the initial parameter vectors, one for each chain or a
function. Itis strongly recommended to initialize multiple chains from dispersed
points. A of NULL signifies to use the starting values present in the model (i.e.,
obj$par) for all chains.

L The number of leapfrog steps to take. The NUTS algorithm does not require
this as an input. If L=1 this function will perform Langevin sampling. In some
contexts L can roughly be thought of as a thinning rate.

eps The step size. If a numeric value is passed, it will be used throughout the entire
chain. A NULL value will initiate sampler_params of eps using the dual averag-
ing algorithm during the first warmup steps.

warmup The number of warmup iterations.

seed The random seed to use.

chain The chain number, for printing only.

thin The thinning rate to apply to samples. Typically not used with NUTS.

control A list to control the sampler. See details for further use.

Details

This function implements algorithm 5 of Hoffman and Gelman (2014), which includes adaptive
step sizes (eps) via an algorithm called dual averaging.
Value

A list containing samples (’par’) and algorithm details such as step size adaptation and acceptance
probabilities per iteration ("sampler_params’).

16 sample_tmb_nuts

References

* Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo.

* Hoffman and Gelman (2014). The No-U-Turn sampler: Adaptively setting path lengths in
Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15:1593-1623.

Hoffman and Gelman (2014). The No-U-Turn sampler: Adaptively setting path lengths in Hamil-
tonian Monte Carlo. J. Mach. Learn. Res. 15:1593-1623.

See Also
sample_tmb
sample_tmb
sample_tmb_nuts Draw MCMC samples from a model posterior using the No-U-Turn
(NUTS) sampler with dual averaging.
Description

Draw MCMC samples from a model posterior using the No-U-Turn (NUTS) sampler with dual
averaging.
Usage

sample_tmb_nuts(iter, fn, gr, init, warmup = floor(iter/2), chain = 1,
thin = 1, seed = NULL, control = NULL)

Arguments

iter The number of samples to draw.

fn A function that returns the log of the posterior density.

gr A function that returns a vector of gradients of the log of the posterior density
(same as fn).

init A list of lists containing the initial parameter vectors, one for each chain or a
function. Itis strongly recommended to initialize multiple chains from dispersed
points. A of NULL signifies to use the starting values present in the model (i.e.,
obj$par) for all chains.

warmup The number of warmup iterations.

chain The chain number, for printing only.

thin The thinning rate to apply to samples. Typically not used with NUTS.

seed The random seed to use.

control A list to control the sampler. See details for further use.

sample_tmb_rwm 17

Details

This function implements algorithm 6 of Hoffman and Gelman (2014), which includes adaptive
step sizes (eps) via an algorithm called dual averaging. It also includes an adaptation scheme to
tune a diagonal mass matrix (metric) during warmup.

These fn and gr functions must have Jacobians already applied if there are transformations used.

References

Hoffman and Gelman (2014). The No-U-Turn sampler: Adaptively setting path lengths in Hamil-
tonian Monte Carlo. J. Mach. Learn. Res. 15:1593-1623.

See Also
sample_tmb
sample_tmb_rwm [Deprecated] Draw MCMC samples from a model posterior using a
Random Walk Metropolis (RWM) sampler.
Description

[Deprecated] Draw MCMC samples from a model posterior using a Random Walk Metropolis
(RWM) sampler.

Usage

sample_tmb_rwm(iter, fn, init, alpha = 1, chain =1,
warmup = floor(iter/2), thin = 1, seed = NULL, control = NULL)

Arguments

iter The number of samples to draw.

fn A function that returns the log of the posterior density.

init A list of lists containing the initial parameter vectors, one for each chain or a
function. Itis strongly recommended to initialize multiple chains from dispersed
points. A of NULL signifies to use the starting values present in the model (i.e.,
obj$par) for all chains.

alpha The amount to scale the proposal, i.e, Xnew=Xcur+alpha*Xproposed where
Xproposed is generated from a mean-zero multivariate normal. Varying alpha
varies the acceptance rate.

chain The chain number, for printing only.

warmup The number of warmup iterations.

thin The thinning rate to apply to samples. Typically not used with NUTS.

seed The random seed to use.

control A list to control the sampler. See details for further use.

18 sample_tmb_rwm

Details

This algorithm does not yet contain adaptation of alpha so some trial and error may be required for
efficient sampling.

Value

A list containing samples and other metadata.

References

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., 1953. Equation of
state calculations by fast computing machines. J Chem Phys. 21:1087-1092.

See Also

sample_tmb

Index

.getADMBHessian, 2

adnuts, 3
adnuts-package (adnuts), 3

check_identifiable, 4

extract_sampler_params, 4
extract_samples, 5, 14

launch_shinyadmb, 5, 6
launch_shinystan, 14
launch_shinytmb, 5,7, 9, 14

monitor, 6
pairs_admb, 7

sample_admb, 8, 10-12
sample_admb_nuts, 10
sample_admb_rwm, 11
sample_inits, 12
sample_tmb, 3, 12, 12, 16, 18
sample_tmb_hmc, 15
sample_tmb_nuts, 16
sample_tmb_rwm, 17

19

	.getADMBHessian
	adnuts
	check_identifiable
	extract_sampler_params
	extract_samples
	launch_shinyadmb
	launch_shinytmb
	pairs_admb
	sample_admb
	sample_admb_nuts
	sample_admb_rwm
	sample_inits
	sample_tmb
	sample_tmb_hmc
	sample_tmb_nuts
	sample_tmb_rwm
	Index

