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There are several methods to estimate the parameters of a hidden Markov model (HMM). To be complete,
we discuss three methods typically used when assumed that the data is generated by one (uni-level) model.
That is, the Maximum Likelihood approach, the Baum Welch algorithm utilizing the forward backward
probabilities, and the Bayesian estimation method. Note that all these methods assume that the number of
states is known from the context of the application, i.e., specified by the user. The issue of determining the
number of states is discussed in the vignette “tutorial-mhmm”.
After discussing the simplified case of estimating the parameters where the data consists of only one observed
sequence (or, with multiple sequences, assuming that all data is generated by one identical model), we proceed
with elaborating on estimating the parameters of a multilevel hidden Markov model.

Estimating the parameters of the HMM

Maximum likelihood (ML)

ML estimation can be used to estimate the parameters of the HMM. The relevant likelihood function has a
convenient form:

LT = δP(o1)ΓP(o2)ΓP(o3) . . . ΓP(oT )1′. (1)

In equation 1, P(ot) denotes a diagonal matrix with the state-dependent conditional probabilities of observing
Ot = o as entries, δ denotes the distribution of the initial probabilities πi, Γ denotes the transition probability
matrix, and 1′ is a column vector consisting of m (i.e., the number of distinct states) elements which all have
the value one. See the vignette “tutorial-mhmm” for an explanation of these quantities. Direct maximization
of the log-likelihood poses no problems even for very long sequences, provided measures are taken to avoid
numerical underflow1.

Expectation Maximization (EM) or Baum-Welch algorithm

The EM algorithm (Dempster, Laird, and Rubin 1977), in this context also known as the Baum-Welch
algorithm (Baum et al. 1970; Rabiner 1989), can also be used to maximize the log-likelihood function.
Here, the unobserved latent states are treated as missing data, and quantities known as the forward and the
backward probabilities are used to obtain the ‘complete-data log-likelihood’ of the HMM parameters: the
log-likelihood based on both the observed event sequence and the unobserved, or “missing”, latent states.
The forward probabilities αt(i) denote the joint probability of the observed event sequence from time point 1
to t and state S at time point t being i:

αt(i) = Pr(O1 = o1, O2 = o2, . . . , Ot = ot, St = i). (2)

The name “forward probabilities” derives from the fact that when computing the forward probabilities αt,
one evaluates the sequence of hidden states in the chronological order (i.e., forward in time) until time point
t. The backward probabilities βt(i) denote the conditional probability of the observed event sequence after
time point t until the end, so from t + 1, t + 2, . . . , T , given that state S at time point t equals i:

βt(i) = Pr(Ot+1 = ot+1, Ot+2 = ot+2, . . . , OT = oT | St = i). (3)

1In case of a discrete state-dependent distribution, multiplication of the elements of the likelihood function, being made up of
probabilities, results in progressively smaller outcomes as one proceeds in the function from 1 to T , eventually rounding to zero.
To avoid this phenomenon, referred to as numerical underflow, a so-called scaling factor is implemented, see e.g., Zucchini and
MacDonald (2016)
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When computing the backward probabilities βt, one evaluates the sequence of hidden states in the reversed
order, i.e., from ST , ST −1, . . . , St+1. The forward and backward probabilities together cover the complete
event sequence from t = 1 to T , and combined give the joint probability of the complete event sequence and
state S at time point t being i:

αt(i)βt(i) = Pr(O1 = o1, O2 = o2, . . . , OT = oT , St = i). (4)

We refer to Cappé (2005) for a discussion on the advantages of combining forward and backward probability
information in the EM algorithm over direct maximization of the likelihood for the HMM.

Bayesian estimation

A third approach is to use Bayesian estimation to infer the parameters of the HMM. We refer to e.g., Gelman
et al. (2014), Lynch (2007), Rossi, Allenby, and McCulloch (2012) for an in-depth exposition of Bayesian
statistics. In general terms, the difference between frequentist and Bayesian estimation is the following.
In frequentist estimation, we view the parameters as fixed entities in the population, which are subject
only to sampling fluctuation (as quantified in the standard error of the estimate). In Bayesian estimation,
however, we assume that each parameter follows a given distribution. The general shape of this distribution
is determined beforehand, using a prior distribution. This prior distribution not only determines the shape of
the parameter distribution, but also allows for giving some information to the model with respect to the most
likely values of the parameter that is estimated. To arrive at the final distribution for the parameter - which
is called the posterior distribution -, the prior distribution is combined with the likelihood function of the
data using Bayes’ theorem. Here, the likelihood function provides us with the probability of the data given
the parameters. While any aspect of these distributions may be of interest, the emphasis is usually on the
mean (or median) of the posterior distribution, which serves as the point estimate of the parameter of interest
(analogous to the frequentist parameter estimates). In the event that one has no or vague expectations about
the possible parameter values, one can specify “non-informative” priors (e.g., uniform distribution). That is,
one can choose parameters of the prior distributions, so called hyper-parameters, such that the parameters
may assume a wide range of possible values. Non-informative priors therefore express a lack of knowledge.
In the implemented hidden Markov model, both the transitions from state i at time point t to any of the
other states at time point t + 1 and the observed outcomes within state i follow a categorical distribution,
with parameter sets Γi (i.e., the probabilities in row i of the transition probability matrix Γ) and θi (i.e.,
the state i dependent probabilities of observing an act). A convenient (conjugate) prior distribution on the
parameters of the categorical distribution is a (symmetric) Dirichlet distribution. We assume that the rows
of Γ and the state-dependent probabilities θi are independent. That is,

St=2,...,T ∼ ΓSt−1
with Γi ∼ Dir(a10) and (5)

Ot=1,...,T ∼ θSt
with θi ∼ Dir(a20), (6)

where the probability distribution of the current state St is given by the row of the transition probability
matrix Γ corresponding to the previous state in the hidden state sequence St−1. The probability distribution
of St given by Γ holds for states after the first time point, i.e., t starts at 2 as there is no previous state in
the hidden state sequence for state S at t = 1. The probability of the first state in the hidden state sequence
S1 is given by the initial probabilities of the states πi. The probability distribution of the observed event Ot

is given by state-dependent probabilities θi corresponding to the current state St. The hyper-parameter a10

of the prior Dirichlet distribution on Γi is a vector with length equal to the number of states m, and the
hyper-parameter a20 of the prior Dirichlet distribution on θi is a vector with length equal to the number of
categorical outcomes q. Note that in this model, the hyper-parameter values are assumed invariant over the
states i. The initial probabilities of the states πi are assumed to coincide with the stationary distribution of
Γ and are therefore not independent (to-be-estimated) parameters.
Given these distributions, our goal is to construct the joint posterior distribution of the hidden state sequence
and the parameter estimates, given the observed event sequence and the hyper-parameters

Pr
(

(St), Γi, θi | (Ot)
)

∝ Pr
(

(Ot) | (St), θi

)

Pr
(

(St) | Γi

)

Pr
(

Γi | a10

)

Pr
(

θi | a20

)

(7)

by drawing samples from the posterior distribution. By applying a Gibbs sampler, we can iteratively sample
from the appropriate conditional posterior distributions of St, Γi and θi, given the remaining parameters
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in the model. In short, the Gibbs sampler iterates between the following two steps: first the hidden state
sequence S1, S2, . . . , ST is sampled, given, the observed event sequence O1, O2, . . . , OT , and the current values
of the parameters Γ and θi. Subsequently, the remaining parameters in the model (Γi and θi) are updated by
sampling them conditional on the sampled hidden state sequence S1, S2, . . . , ST and observed event sequence
O1, O2, . . . , OT .
Sampling the hidden state sequence of the HMM by means of the Gibbs sampler can be performed in various
ways. Here, we use the approach outlined by Scott (2002). That is, we use the forward-backward Gibbs
sampler, in which first the forward probabilities αt(i) (i.e., the joint probability of state S = i at time point t
and the observed event sequence from time point 1 to t) as given in equation 2 are obtained, after which the
hidden state sequence is sampled in a backward run (i.e., drawing ST , ST −1, . . . , S1) using the corresponding
forward probabilities αT :1. The forward-backward Gibbs sampler produces sampled values that rapidly
represent the complete area of the posterior distribution, and produces useful quantities as byproducts, such
as the log-likelihood of the observed data given the current draws of the parameters in each iteration (Scott
2002). In the section “Hybrid Metropolis within Gibbs sampler used to fit the multilevel HMM” , we provide a
more detailed description of how the Gibbs sampler proceeds for the HMM.
As it generally takes a number of iterations before the Gibbs sampler converges to the appropriate region of
the posterior distribution, the initial iterations are usually discarded as a ‘burn-in’ period. The remaining
sampled values of Γi and θi provide the posterior distributions of their respective parameters.
A problem that can arise when using Bayesian estimation in this context is “label switching”, i.e., as the
hidden states of the HMM have no a priori ordering or interpretation, their labels (i.e., which state represents
what) can switch over the iterations of the Gibbs sampler, without affecting the likelihood of the model (see
e.g., Scott 2002; Jasra, Holmes, and Stephens 2005). As a result, the marginal posterior distributions of the
parameters are impossible to interpret because they represent the distribution of multiple states. Sometimes,
using reasonable starting values (i.e., the user-specified parameter values of the “zero-th” iteration used
to start the MCMC sampler) suffices to prevent label switching. Otherwise, possible solutions are to set
constraints on the parameters of the state-dependent distribution, or use (weakly) informative priors on the
state-dependent distributions (Scott 2002). Hence, before making inferences from the obtained marginal
distributions, one should first assess if the problem of label switching is present (e.g., by using plots of the
sampled parameter values of the state-dependent distributions over the iterations), and if necessary, take
steps to prevent the problem of label switching. In our own experience, the use of reasonable starting values
always sufficed to prevent label switching.
Both EM and Bayesian Gibbs sampling are viable inferential procedures for HMMs, but for more complex
HMMs such as multilevel HMMs, the Bayesian estimation method has several advantages (e.g., lower
computational cost, and less computation time) over the EM algorithm. We refer to Rydén (2008) for a
comparison on frequentist (i.e., the EM algorithm) and Bayesian approaches.

Estimating the parameters of the multilevel HMM

Bayesian estimation of multilevel models

Bayesian estimation is particularly suited to model multilevel models. In the multilevel model, we have a
multi-layered structure in the parameters. For the HMM, we have subject level parameters at the first level
pertaining to the observations within a subject, and group level parameters at the second level that describe
the mean and variation within the group, as inferred from the sample of subjects. To illustrate the multilevel
model, suppose that we have K subjects for which we have each H observations on their number of cups of
coffee consumed per day y, i.e., subject k ∈ {1, 2, . . . , K} and observation h ∈ {1, 2, . . . , H}. Hence, at the
first level, we have daily observations on coffee consumption within subjects: y11, y12, . . ., y1H , y21, y22, . . .,
y2H , yK1, yK2, . . ., yKH . Using a multilevel model, the observations of each subject are distributed according
to the same distribution Q, but each subject has its own parameter set θk. That is:

ykh ∼ Q(θk). (8)

In addition, the subject-specific parameter sets θk are realizations of a common group level distribution W
with parameter set Λ:

θk ∼ W (Λ). (9)

E. Aarts Vignette to the R package ‘mHMMbayes‘ 3



ESTIMATING THE PARAMETERS OF THE MULTILEVEL HMM

That is, in the multilevel model, the subject level model parameters that pertain to the observations within a
subject are assumed to be random draws from a given distribution, and, as such, are denoted as “random”,
independent of the used estimation method (i.e., Bayesian or classical frequentist estimation). This multi-
layered structure fits naturally into a Bayesian paradigm since in Bayesian estimation, model parameters are
by definition viewed as random. That is, parameters follow a given distribution, where the prior distribution
expresses the prior expectations with respect to the most likely values of the model parameters. In the
multilevel model, the prior expectations of the subject level model parameter values are reflected in the group
level distribution. Hence, in Bayesian estimation, the prior distribution for the subject level parameters,
is given by the group level distribution. The group level distribution provides information on the location
(e.g., mean) of the subject level (i.e., subject-specific) parameters, and on the variation in the subject level
parameters. As the Normal distribution is a flexible distribution with parameters that easily relate to this
interpretation, the group level distribution is often taken to be a normal distribution.
To illustrate the notion of the group level (prior) distribution, suppose we assume a Poisson distribution for
the observations on daily coffee consumption within each subject k, and a Normal group level distribution
on the Poisson mean. In this case, the set of hyper-parameters (i.e., the parameters of the group level
distribution, here the mean (Λµ) and variance (Λσ2) of the Normal distribution) on the Poisson mean denote
the group mean number of cups of coffee consumed per day over subjects, and the variation in the mean
number of cups of coffee consumed per day between subjects.
Finally, in fitting the multilevel model using Bayesian estimation, a prior distribution is placed on each
of these hyper-parameters. Prior distributions on hyper-parameters are referred to as hyper-priors and
allow the hyper-parameters to have a distribution instead of being fixed. That is, as the parameters that
characterize the group level prior distribution (i.e., the hyper-parameters) are now also quantities of interest
(i.e., to-be-estimated), they are viewed as random in Bayesian estimation methods. The randomness in the
hyper-parameters is thus specific to the Bayesian estimation method of the multilevel model, in contrast to
the randomness in the subject level parameters.
To continue our example, the hyper-prior on the mean of the Normal prior distribution for the subject level
mean of cups of coffee consumed daily denote our prior belief on the mean number of cups of coffee consumed
per day in the group. The hyper-prior on the variance of the Normal prior distribution for the subject level
mean of cups of coffee consumed per day denote our prior belief on how much this mean number of cups of
coffee varies over subjects. Often, the hyper-prior distribution and its values are chosen to be vague (i.e., not
informative), like a uniform distribution:

Λµ ∼ U(0, 20), (10)

Λσ2 ∼ U(0, 500).

See e.g., Gelman et al. (2014), Lynch (2007), Rossi, Allenby, and McCulloch (2012) for an in-depth exposition
of various multilevel Bayesian models and e.g. Snijders and Bosker (2011), Hox, Moerbeek, and Schoot (2017),
Goldstein (2011) for coverage of the classical, frequentist approach to multilevel (also called hierarchical or
random effects) models.
The present implemented multilevel model pertains only to data comprised of (multivariate) categorical
observations, and, possibly, time invariant covariates (i.e., for each covariate, we have one value per subject).
As such, data is comprised of Od,k,t observations on the categorical outcome(s) for categorical outcome
variable d = 1, 2, . . . , D for subject k = 1, 2, . . . , K at time point t = 1, 2, . . . , T . In addition, we have a matrix
X that consists of k covariate vectors with length p × 1, Xk = (Xk1, Xk2, . . . , Xkp). As yet, the explanation
of the estimation procedure in this vignette is restricted to the univariate case for simplicity. That is, to the
instance that we only have one observed categorical outcome variable per subject, and our outcome data is
comprised of Okt observations. However, the explanation extents quite naturally to the multivariate case.
Given these observations, we construct a multilevel model for each of the parameters in the HMM with q
observable categorical outcomes, and m hidden states, possibly predicted by p covariates. Using the multilevel
framework, each parameter is assumed to follow a given distribution, and the parameter value of a given
subject represents a draw from this common (i.e., group level) distribution. Hence, in the multilevel Bayesian
HMM, the parameters are: the subject-specific transition probability matrix Γk with transition probabilities
γkij and the subject-specific state-dependent probability distribution denoting the subject-specific probabilities
θki of categorical outcomes within state i. The initial probabilities of the states πk,j are not estimated as πk

is assumed to be the stationary distribution of Γk. Subsequently, the parameter values of the subjects are
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assumed to be realizations of a model component and state specific (multivariate) Normal distribution. We
discuss the multilevel model for the two components of the HMM (Γk and θki separately. Table 1 provides
an overview of the used symbols in the multilevel models related to the two components of the HMM. We use
the subscript 0 to denote values of the hyper-prior distribution parameters.

Multilevel model for the state-dependent probabilities θki

In the standard (non-multilevel) Bayesian HMM estimation, we specified a Dirichlet prior distribution on the
state-dependent probabilities θi. To provide a flexible model that allows for the inclusion of random effects
and (time invariant) covariates, we follow Altman (2007) and extend the subject-specific state-dependent
probabilities θki to a multinomial logit (MNL) model. Hence, we utilize a linear predictor function to estimate
the probability of observing categorical outcome l within state i. The state i specific linear predictor function
at the subject level consists of q − 1 random intercepts (i.e., each subject has its own intercept). That is, each
categorical outcome l has its own intercept, with the exception of the first categorical outcome in the set for
which the intercept is omitted for reasons of model identification (i.e., not all probabilities can be estimated
freely as within subject k and state i, the probabilities need to add up to 1). By making the intercepts
random (i.e., each subject has its own intercept), we accommodate heterogeneity between subjects in their
state conditional probabilities. Hence, in the MNL model for θki, subject k’s probabilities of observing
categorical outcome l ∈ {1, 2, . . . , q} within a state i ∈ {1, 2, . . . , m}, θkil, are modeled using m batches of
q − 1 random intercepts, α(O)ki = (α(O)ki2, α(O)ki3, . . . , α(O)kiq). That is,

θkil =
exp(α(O)kil)

1 +
∑q

l̄=2
exp(α(O)kil̄)

, (11)

where K, m, and q are the number of subjects, states, and categorical outcomes, respectively. The numerator
is set equal to one for l = 1, making the first categorical outcome in the set the baseline category in every
state.
At the group level, these subject-level intercepts are (possibly) partly determined by covariates that differentiate
between subjects. Thus, in addition to the subject level random intercepts α(O)ki, we have m matrices of
p ∗ (q − 1) fixed regression coefficients, β(O)i, where p denotes the number of used covariates. The columns
of β(O)i are β(O)il = (β(O)il1, β(O)il2, . . . , β(O)ilp) to model the random intercepts for state i and categorical
outcome l given p covariates. Combining both terms, each batch of random intercepts α(O)ki (i.e., the batch
of q − 1 intercepts for the state i conditional probabilities of a categorical outcome for subject k) come from
a state i specific population level multivariate Normal distribution, with mean vector ᾱ(O)i + X⊤

k β(O)il that
has length q − 1, and covariance Φi that denotes the covariance between the q − 1 state i specific intercepts
over subjects and models the dependence of the probabilities of categorical outcomes within state i (i.e., we
specify a state specific multivariate Normal prior distribution on the subject-specific α(O)ki parameters). A
convenient hyper-prior on the hyper-parameters of the group level prior distribution is a multivariate Normal
distribution for the mean vector ᾱ(O)i and the fixed regression coefficients β(O)il, and an Inverse Wishart
distribution for the covariance Φi (see e.g., Gelman et al. 2014). That is,

Okt ∼ θk,Skt
with θki ∼ MNL

(

α(O)ki

)

, (12)

α(O)ki ∼ N
(

ᾱ(O)i + X⊤

k β(O)il, Φi

)

with ᾱ(O)i ∼ N
(

α(O)0, 1
K0

Φi

)

, (13)

and β(O)i ∼ N
(

β(O)0, 1
K0

Φi

)

, (14)

and Φi ∼ IW
(

Φ0, df0

)

,

where the probability distribution of the observed categorical outcomes Okt is given by the subject k specific
state-dependent probabilities θki corresponding to the current state Skt (where t indicates the time point,
see Table 1). The parameters α(O)0, β(O)0, and K0 denote the values of the parameters of the hyper-prior on
the group (mean) vector ᾱ(O)i and β(O)i, respectively. Here, α(O)0 and β(O)0 represent a vector of means
and K0 denotes the number of observations (i.e., the number of hypothetical prior subjects) on which the
prior mean vector α(O)0 and β(O)0 are based, i.e., K0 determines the weight of the prior on ᾱ(O)i and β(O)i.
The parameters Φ0 and df0, respectively, denote the values of the covariance and the degrees of freedom of
the hyper-prior Inverse Wishart distribution on the population variance Φi of the subject-specific random
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Table 1: Elements of the multilevel HMM
Symbol Description
k subject k ∈ {1, 2, . . . , K}, where K is the total number of subjects in the

dataset.
t Time point t ∈ {1, 2, . . . , T}, where T is the total length of each sequence of

observations. In the current notation, T is assumed equal over subjects. Within
the R package mHMMbayes this is not a requirement, however.

q Number of distinct observation categories.
m Number of distinct states.
p Number of (time invariant) covariates.
Okt Observation on the categorical outcome for subject k at time point t.
Skt State for subject k at time point t for S ∈ {1, 2, . . . , m}.
i Realization of the current state St, where i ∈ {1, 2, . . . , m}.
X Matrix of k covariate vectors with length p × 1, Xk = (Xk1, Xk2, . . . , Xkp).

Γk = [γkij ] Subject-specific transition probability matrix between states with the probabili-
ties γkij of transitioning from state Skt = i to state Sk(t+1) = j.

α(S)ki subject k and state i specific batch of m − 1 random intercepts that model the
transitions from state i to the next state j.

ᾱ(S)i State i specific group mean vector over the subject k batches of the m − 1
random intercepts α(S)ki.

β(S)i State i specific fixed regression coefficients to predict the random intercepts
α(S)ki.

Ψi State i specific covariance between the subject k batches of the m − 1 random
intercepts α(S)ki.

α(S)0, β(S)0, K0 Values of the parameters of the hyper-prior on the group mean vector ᾱ(S)i

and fixed regression coefficients β(S)i .

Ψ0, df0 Values of the parameters of the hyper-prior on the group covariance Ψi.

Okt Observed event for subject k at time point t for O ∈ {1, 2, . . . q}.
l Realization of current event Okt, where l ∈ {1, 2, . . . , q}.
θki = [θkil] Subject-specific state i categorical conditional distribution, with the probabilities

pkil of observing the categorical outcome Okt = l in state Skt = i.
α(O)ki Subject k state i specific batch of q − 1 random intercepts that model the

probability of a categorical outcome Okt within state i.
ᾱ(O)i State i specific group mean vector over the subject k batches of the q−1 random

intercepts α(O)ki.
β(O)i State i specific fixed regression coefficients to predict the subject-specific random

intercepts α(O)ki.
Φi State i specific covariance between the subject k batches of the q − 1 random

intercepts α(O)ki.
α(O)0, β(O)0, K0 Values of the parameters of the hyper-prior on the group mean vector ᾱ(O)i

and the fixed regression coefficients β(O)i.

Φ0, df0 Values of the parameters of the hyper-prior on the group covariance Φi.
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intercepts α(O)ki. Note that we chose the values of the parameters of the hyper-prior distributions that
result in uninformative hyper-prior distributions, as such the values of the parameters of the hyper-priors are
assumed invariant over the states i.

Multilevel model for the transition probability matrix Γk with transition probabilities γkij

Similar to the state-dependent probabilities θki, we extend each set of state i specific state transition
probabilities γkij to a MNL model to allow for the inclusion of random effects and (time invariant) covariates.
Hence, we use a linear predictor function to estimate the probability to transition from behavioral state i to
state j. The linear predictor function consists of m − 1 random intercepts to allow for heterogeneity between
subjects in their probabilities to switch between states. That is, within row i of the transition probability
matrix Γk, each state j has its own intercept, where the intercept that relates to transitioning to the first
state in the set is omitted for reasons of model identification (i.e., not all probabilities can be estimated freely
as the row-probabilities need to add up to 1). Hence, each subject’s probability to transition from behavioral
state i ∈ {1, 2, . . . , m} to state j ∈ {1, 2, . . . , m} is modeled using m batches of m − 1 random intercepts,
α(S)ki = (α(S)k13, . . . , α(S)k1m, α(S)k23, . . . , α(S)k2m, . . . , α(S)km2, . . . , α(S)km(m−1)). That is,

γkij =
exp(α(S)kij)

1 +
∑

j̄∈Z exp(α(S)kij̄)
, (15)

where Z ∈ {2, . . . , m}
where K and m are again the number of subjects in the dataset, and the distinct number of states, respectively.
The numerator is set equal to 1 for j = 1, making the first state of every row of the transition probability
matrix Γk the baseline category.
At the group level, these subject-level intercepts are (possibly) partly determined by covariates that differentiate
between subjects. Thus, in addition to the subject level random intercepts α(S)ki, we have m matrices of
p ∗ (q − 1) fixed regression coefficients, β(S)i, where p denotes the number of used covariates. The columns
of β(S)i are β(S)ij = (β(S)ij1, β(S)ij2, . . . , β(S)ijp) to model the random intercepts denoting the probability
of transitioning from behavioral state i to state j given p covariates. Combining both terms, each batch of
random intercepts α(S)ki come from a state i specific population level multivariate Normal distribution, with

mean vector ᾱ(S)i + X⊤

k β(S)ij that has length q − 1, and covariance Ψii that denotes the covariance between
the q − 1 state i specific intercepts over subjects, and models the dependency between the probabilities
of states within random intercept batch α(S)ki (i.e., we specify a state specific multivariate Normal prior
distribution on the subject-specific α(S)ki parameters). A convenient hyper-prior on the hyper-parameters of
the group level prior distribution is a multivariate Normal distribution for the mean vector ᾱ(S)i and the
fixed regression coefficients β(S)il and an Inverse Wishart distribution for the covariance Ψi. That is,

Sk,t=2,...,T ∼ Γk,Sk,t−1
with Γk,i ∼ MNL

(

α(S)ki

)

, (16)

α(S)ki ∼ N
(

ᾱ(S)i + X⊤

k β(S)il, Ψi

)

with ᾱ(S)i ∼ N
(

α(S)0, 1
K0

Ψi

)

, (17)

and β(S)i ∼ N
(

β(S)0, 1
K0

Ψi

)

, (18)

and Ψi ∼ IW
(

Ψ0, df0

)

,

where the subject-specific probability distribution of the current state Skt is given by the row of the transition
probability matrix Γk corresponding to the previous state in the hidden state sequence Sk,t−1. The probability
distribution of Skt given by Γk holds for states after the first time point, i.e., t starts at 2 as there is no
previous state in the hidden state sequence for state Skt at t = 1. The probability of the first state in the
hidden state sequence Sk,1 is given by the initial probabilities of the states πk,j . The parameters α(S)0, β(S)0,
and K0 denote the values of the parameters of the hyper-prior on the group (mean) vector ᾱ(S)i and β(S)i,
respectively. Here, α(S)0 and β(S)0 represent a vector of means and K0 denotes the number of observations
(i.e., the number of hypothetical prior subjects) on which the prior mean vector α(S)0 and β(S)0 are based.
The parameters Ψ0 and df0, respectively, denote values of the covariance and the degrees of freedom of the
hyper-prior Inverse Wishart distribution on the group variance Ψi of the subject-specific random intercepts
α(S)ki.
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Hybrid Metropolis within Gibbs sampler used to fit the multilevel

HMM

Given the above distributions, our goal is to construct the joint posterior distribution of the parameters - i.e.,
the subject-specific hidden state sequences, the subject level (i.e., subject-specific) parameters and the group
level parameter estimates - given the observations (i.e., the observed event sequences for all k subjects that
are analyzed simultaneously as one group, and the hyper-prior parameter values)

Pr
(

Skt, Γki, α(S)ki, ᾱ(S)i, β(S)i, Ψi, θki, α(O)ki, ᾱ(O)i, β(O)ki, Φi | Okt, X
)

∝ Pr
(

Okt | Skt, θki

)

Pr
(

Skt | Γki

)

Pr
(

θi | α(O)ki

)

Pr
(

Γi | α(S)ki

)

Pr
(

α(O)ki | ᾱ(O)i, X, β(O)i, Φi

)

Pr
(

α(S)ki | ᾱ(S)i, X, β(S)i, Ψi

)

Pr
(

ᾱ(O)i | α(O)0, K0, Φi

)

Pr
(

β(O)i | β(O)0, K0, Φi

)

Pr
(

Φi | Φ0, df0

)

Pr
(

ᾱ(S)i | α(S)0, K0, Ψi

)

Pr
(

β(S)i | β(S)0, K0, Ψi

)

Pr
(

Ψi | Ψ0, df0

)

(19)

by drawing samples from the posterior distribution. We follow a MCMC sampler algorithm to iteratively
sample from the appropriate conditional posterior distributions of α(O)ki, α(S)ki, ᾱ(O)i, β(O)i, Φi, ᾱ(S)i,
β(S)i, and Ψi given the remaining parameters in the model (see below). The conditional posterior distributions
of all parameters are provided in the Section “Full conditional posterior distributions of the multilevel HMM”.
In Bayesian estimation, it is preferable to use the natural conjugate prior as prior distribution, as this
conveniently results in a closed form expression of the (conditional) posterior distribution(s), making Gibbs
sampling possible. However, as the non-conjugate Normal prior provides a much more intuitive interpretation
of the prior group level distribution compared to using the natural conjugate prior of the MNL model,
and since the asymptotic Normal approximation is excellent for the MNL likelihood (Rossi, Allenby, and
McCulloch 2012), we opt for the former and do not use the conjugate prior of the MNL model. Therefore, we
cannot use a Gibbs sampler to update the parameters of the subject-specific state-dependent distributions and
the subject-specific transition probabilities, α(O)ki and α(S)ki, respectively. Instead, we use a combination
of the Gibbs sampler and the Metropolis algorithm, i.e., a Hybrid Metropolis within Gibbs sampler. That
is, we use a Metropolis sampler to update α(O)ki and α(S)ki, and we use a Gibbs sampler to update all
other model parameters. There are various types of Metropolis algorithms, and each type involves specific
choices. Simulation studies showed that, in line with Rossi, Allenby, and McCulloch (2012), the Random
Walk (RW) Metropolis sampler outperformed the Independence Metropolis sampler in terms of efficiency
for estimating the parameters of the (multilevel) HMM, we chose to use the RW Metropolis sampler to
update the parameters of the subject-specific state-dependent distributions (α(O)ki) and subject-specific state
transition probabilities (α(S)ki) in our Hybrid Metropolis within Gibbs sampler.
The Hybrid Metropolis within Gibbs sampler for the multilevel HMM proceeds in a similar fashion as the
Gibbs sampler for the HMM: first the hidden state sequences are sampled (for each subject separately), after
which the (subject level and group level) parameters are sampled given the observed event sequence (for
each subject, Okt), the sampled hidden state sequences (of each subject, Skt), and the current values of the
remaining parameters in the model. We provide a stepwise walkthrough of the hybrid Metropolis within
Gibbs sampler for the multilevel HMM below.

Stepwise walkthrough of the used hybrid Metropolis within Gibbs sampler

The Hybrid Metropolis within Gibbs sampler used to fit the multilevel HMM proceeds as described below.
We use the subscript c to denote the current (i.e., updated using a combination of the value of the hyper-prior
and the data) parameters of the conditional posterior distributions.

• Given the observed event sequence for each subject k Ok1, Ok2, . . . , OkT and the current values of the
parameters Γ and θi, a hidden state sequence Sk1, Sk2, . . . , SkT is sampled for each subject separately,
utilizing the forward probabilities. Note that for each subject k ∈ {1, 2, . . . , K}, the subject-specific
parameters (i.e., Γki and θki) are used as input for the forward-backward recursions. For the first run
of the algorithm, user-specified start values are used for the subject-specific parameters Γki and θki.

• Given the current subject-specific sets of intercepts α(O)ki and α(S)ki (related to the subject-specific state-
dependent probabilities θki and the subject-specific state transition probability matrix Γk, respectively)
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and the observed (time invariant) covariates X, new parameter estimates are drawn for the group
mean and covariance of the subject-specific sets of intercepts α(O)ki and α(S)ki and the fixed regression
coefficients β(O)i and β(S)i from their conditional posterior distributions Pr(ᾱ(O)i, β(O)i | ), Pr(Φi | ),
Pr(ᾱ(S)i, β(S)i | ), and Pr(Ψi | ), respectively.
That is, first the state i specific group variance-covariance matrices Φi and Ψi (i.e., the covariance
between intercepts for the state i and subject k specific intercept vector α(O)ki or α(S)ki) are drawn
from Pr(Φi | ) ∼ IW(Φci, dfc) and Pr(Ψi | ) ∼ IW(Ψci, dfc), where Φci and Ψci represent a combination
of the chosen prior values Φ0 and Ψ0 and the state i specific covariance observed over subjects in α(O)ki

and α(S)ki, respectively, and dfc represent a combination of the chosen prior value df0 and the number
of subjects in the analyzed subject dataset. See Gelman et al. (2014) for details on updating the
parameters of an Inverse Wishart distribution.
Next, the state i specific mean group estimates ᾱ(O)i and ᾱ(S)i are drawn simultaneously with the
state i specific fixed regression coefficient β(O)i and β(S)i from Pr(ᾱ(O)i, β(O)i | Φi, α(S)ki, X) ∼
N(µ(O)ci,

1
Kc

Φi) and Pr(ᾱ(S)i, β(S)i | Ψi, α(S)ki, X) ∼ N(µ(S)ci,
1

Kc
Ψi), where µ(O)ci and µ(S)ci

represent a combination of the chosen prior values α(O)0 and β(O)0, and α(S)0 and β(S)0, the observed
state i specific mean vector over subjects of the sets of intercepts α(O)ki and α(S)ki and the least
squares estimators of β(O)i and β(S)i. The parameter Kc represents a combination of the prior value
K0 and the number of subjects in the analyzed dataset.

• Given the observed event sequence for each subject (Okt), the sampled hidden state sequences of
each subject (Skt), the group distributions for the subject-specific sets of intercepts α(O)ki and α(S)ki

parameterized by ᾱ(O)i, β(O)i and Φi, and ᾱ(S)i, β(S)i and Ψi, respectively, new estimates of the subject-
specific sets of intercepts α(O)ki and α(S)ki are drawn from their posterior conditional distribution
Pr(α(O)ki | ) and Pr(α(S)ki | ) using a Random Walk (RW) Metropolis sampler. That is, to draw new
estimates for α(O)ki, first a candidate vector α(O)ki[candidate] is sampled from a proposal distribution,
which we chose to be an asymptotic normal approximation to the conditional posterior distribution (see
below). In the RW Metropolis sampler, the vector of means of the proposal distribution is equal to the
current estimate of α(O)ki, and the scale of the distribution (i.e., here the covariance) has to be specified
by the user. To define the scale of the proposal distribution, we followed the method outlined by Rossi,
Allenby, and McCulloch (2012), which is described below. In summary, we use a subject-specific scale
parameter Σα(O)ki, which is a combination between the prior covariance (i.e., the group covariance
Φi), a covariance matrix that captures the distribution of the data of the subjects (i.e., for α(O)ki, this
is the covariance in the observed outcomes within state i for subject k), and a scalar s2. Next, the
candidate α(O)ki[candidate] drawn from the proposal distribution N(α(O)ki, Σα(O)ki) is accepted with
the probability min(1, ρα(O)), where ρα(O) is the ratio between the posterior conditional distribution
evaluated at the candidate value and the posterior conditional distribution evaluated at the current
value:

ρα(O) =
L

(

α(O)ki[candidate] | Okt, Skt = i
)

Pr
(

α(O)ki[candidate] | ᾱ(O)i, X, β(O)i, Φi

)

L
(

α(O)ki[current] | Okt, Skt = i
)

Pr
(

α(O)ki[current] | ᾱ(O)i, X, β(O)i, Φi

) . (20)

If the candidate α(O)ki[candidate] is accepted, the candidate represents the new estimate for α(O)ki. If
the candidate is not accepted, the estimate for α(O)ki remains unchanged.
The new estimates for α(S)ki are drawn in a similar fashion: a candidate vector α(S)ki[candidate] is drawn
from the proposal distribution N(α(S)ki, Σα(S)ki), and accepted with the probability min(1, ρα(S)):

ρα(S) =
L

(

α(S)ki[candidate] | Sk,n, Sk,n−1 = i
)

Pr
(

α(S)ki[candidate] | ᾱ(S)i, X, β(S)i, Ψi

)

L
(

α(S)ki[current] | Sk,n, Sk,n−1 = i
)

Pr
(

α(S)ki[current] | ᾱ(S)i, X, β(S)i, Ψi

) . (21)

Note that the RW Metropolis sampler is repeated for each subject k ∈ {1, 2, . . . , K}.

These steps are repeated for a large number of iterations, and, after discarding the first iterations as a
“burn-in” period, the sampled parameter estimates provide the empirical posterior distribution of the model
parameters.
Regarding the acceptance rate of the RW Metropolis sampler for the subject-specific sets of intercepts α(O)ki

and α(S)ki (i.e., related to the subject-specific state-dependent probabilities θki and the subject-specific state
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transition probability matrix Γk, respectively), an acceptance rate of ∼ 23% is considered optimal when
many parameters are being updated at once (Gelman et al. 2014). Within the R package mHMMbayes, the
number of accepted draws of a model are stored in emiss_naccept and gamma_naccept for the conditional
distributions and the transition probabilities, respectively.

Scaling the proposal distribution of the RW Metropolis sampler

To obtain the scale parameter Σα(O)ki and Σα(S)ki of the proposal distributions of the RW Metropolis sampler
for α(O)ki and α(S)ki, respectively, we followed the method outlined by Rossi, Allenby, and McCulloch (2012),
which has several advantages as discussed below.
The general challenge of the RW Metropolis sampler is that it has to be “tuned” by choosing the scale of
the symmetric proposal distribution (e.g., the variance or covariance of a Normal or multivariate Normal
proposal distribution, respectively). The scale of the proposal distribution is composed of a covariance matrix
Σ, which is then tuned by multiplying it by a scaling factor s2. Hence we denote the scale of the proposal
distribution by s2Σ. The scale s2Σ has to be set such that the drawn parameter estimates cover the entire
area of the posterior distribution (i.e., the scale Σ should not be set too narrow because then only candidate
parameters in close proximity of the current parameter will be drawn), but remains reasonably efficient (i.e.,
the scale Σ should not be set too wide because then many candidate parameters will be rejected resulting in
a slowly progressing chain of drawn parameter estimates).
There are various options for the covariance matrix Σ. Often, the covariance matrix Σ is set such that
it resembles the covariance matrix of the actual posterior distribution. To capture the curvature of each
subject’s conditional posterior distribution, the scale of the RW Metropolis proposal distribution should be
customized to each subject. This also facilitates the possibility to let the amount of information available
within the data of a subject for a parameter determine to which degree the group level distribution dominates
the estimation of the subject-specific parameters. Hence, to approximate the conditional posterior distribution
of each subject, the covariance matrix is set to be a combination of the covariance matrix obtained from the
subject data and the group level covariance matrix Φi or Ψi. To estimate the covariance matrix from the
subject data, which is only used for the proposal distribution of the RW Metropolis sampler, we simply use a
Maximum Likelihood Estimate (MLE), as this quantity is only used for the purpose of scaling the proposal
distribution and is not part of the estimated parameter values that constitute the posterior distribution. The
MLE estimate of the covariance matrix is obtained by maximizing the likelihood of the Multinomial Logit
(MNL) model on the data, and retrieving the Hessian matrix Hki (i.e., the second order partial derivatives
of the likelihood function with respect to the parameters). The covariance matrix of the parameters is the
inverse of the Hessian matrix, H−1

ki . Hence, the covariance matrices for α(O)ki and α(S)ki, are defined by

Σα(O)ki
= (Hα(O)ki + Φ−1

i )−1 and Σα(S)ki
= (Hα(S)ki + Ψ−1

i )−1, respectively. For α(O)ki, the data on which
the Hessian is obtained is the frequency with which a categorical outcome is observed in state i of subject k.
For α(S)ki, this data is the frequency with which state i transitions to another state within subject k. Hence,
the subject-specific covariance matrix (i.e., the inverse of the Hessian matrix) is based on the sampled hidden
state sequence. Therefore, the MLE estimates of the subject-specific covariance matrices that are used for
the RW Metropolis proposal distributions have to be obtained in each iteration, as the sampled hidden state
sequence changes in each iteration.
A potential problem with maximizing the log-likelihood of each subject’s data, is that a certain state might
not be sampled for a subject. To circumvent this problem, we modify the subject likelihood function
by adding a so-called regularizing likelihood function that has a defined maximum to the subject-level
likelihood function. We maximize the resulting pooled likelihood function in order to obtain the MLE
estimates. Here, we use the likelihood function of the combined data over all subjects that are considered
to be part of one group as the regularizing likelihood function. The pooled likelihood function is scaled
by 1 − w × subject-level likelihood + w × overall likelihoodn.obsk/N.obs, so that the overall likelihood function
does not dominate the subject-level likelihood function, and where n.obsk is the number of data observations
for subject k and N.obs is the total number of data observations over all subjects in a group.
Now that we defined the covariance matrix Σ for the scale of the RW Metropolis sampler proposal distribution,
we have to define the scalar factor s2 to obtain the scale s2Σ of the proposal distribution. As in Rossi, Allenby,
and McCulloch (2012)}, we adopt the scaling proposal of Roberts, Rosenthal, and others (2001), and set
scaling to s2 = (2.93/

√
n.param)2, where n.param is the number of parameters to be estimated for α(S)ki or
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α(O)ki in the RW Metropolis sampler, which equals m − 1 in case of α(S)ki (where m denotes the number of
states) and q − 1 in case of α(O)ki (where q denotes the number of categorical outcomes).
In summary, the scale parameter s2Σα(O)ki and s2Σα(S)ki of the proposal distributions of the RW Metropolis
sampler for α(O)ki and α(S)ki are defined as:

s2Σα(O)ki = (2.93/
√

q − 1)2 × (Hα(O)ki + Φ−1
i )−1, and (22)

s2Σα(S)ki = (2.93/
√

m − 1)2 × (Hα(S)ki + Ψ−1
i )−1, (23)

where Hα(O)ki is the Hessian of the kth subject’s data of the frequency with which a categorical outcome

is observed within state i evaluated at the MLE of the pooled likelihood, Hα(S)ki is the Hessian of the kth

subject’s data of the frequency with which state i transitions to another state evaluated at the MLE of the
pooled likelihood, and Φ−1

i and Ψ−1
i are the inverses of the group level covariance matrices. This provides us

with m pairs of scale parameters that closely resemble the scale of the subject-level conditional posterior
distribution, and that 1) are automatically tuned (i.e., we do not require experimentation to determine s2 to
tune the covariance matrix), 2) allow the amount of information available within the data of a specific subject
to determine the degree to which the group level distribution dominates the estimation of that subject’s
level parameters, and 3) do not require each state to be sampled in the hidden state sequence as not each
subject-level likelihood is required to have a maximum.

Full conditional posterior distributions of the multilevel HMM

In the hybrid Metropolis within Gibbs sampler, all level 2 model parameters are directly sampled from their
full conditional posterior distributions. The full conditional posterior distributions are obtained by applying
Bayes theorem, combining the (hyper-)prior distribution of the model parameter and the likelihood function.
Direct sampling from the conditional posterior distributions for these model parameters is possible, as the
choice of the (hyper-)prior distribution results in a closed form expression of the full conditional posterior
distribution. That is:

• The full conditional posterior distributions of Φi and Ψi (i.e., the state i specific group covariance
between the subject k batches of the q − 1 random intercepts α(O)ki pertaining to the subject-specific
state-dependent probabilities θki, and the state i specific group covariance between the subject k batches
of the m − 1 random intercepts α(S)ki pertaining to the subject-specific state transition probabilities,
Γk) are:

Pr(Φi | ) ∼ IW(Φci, dfc) (24)

Φci = Φ0 + (α(O)ki − Xµ(O)ci)
⊤(α(O)ki − Xµ(O)ci) +

(

µ(O)ci −
[

α(O)0

β(O)0

]

)⊤

K0

(

µ(O)ci −
[

α(O)0

β(O)0

]

)

µ(O)ci = (X⊤X + K0)−1
(

X⊤α(O)ki + K0

[

α(O)0

β(O)0

]

)

dfc = df0 + K

Pr(Ψi | ) ∼ IW(Ψci, dfc) (25)

Ψci = Ψ0 + (α(S)ki − Xµ(S)ci)
⊤(α(S)ki − Xµ(S)ci) +

(

µ(S)ci −
[

α(S)0

β(S)0

]

)⊤

K0

(

µ(S)ci −
[

α(S)0

β(S)0

]

)

µ(S)ci = (X⊤X + K0)−1
(

X⊤α(S)ki + K0

[

α(S)0

β(S)0

]

)

dfc = df0 + K

where xT is the transpose of x, α(O)0 and α(S)0 denote a vector of chosen mean values of the Normal
hyper-prior distribution on the group mean vector ᾱ(O)i and ᾱ(S)i, respectively, β(O)0 and β(S)0 denote
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a vector of chosen values of the Normal hyper-prior distribution on fixed regression parameters β(O)i

and β(S)i, respectively, K0 denotes a diagonal matrix with on the diagonal the number of observations
(i.e., the number of hypothetical prior subjects) on which the prior values ᾱ(O)i, ᾱ(S)0, β(O)i, and β(S)i

are based, K denotes the total number of subjects in the dataset, Φ0 and Ψ0 denote the chosen prior
covariance values of the Inverse Wishart hyper-prior distribution on the group covariance Φi and Ψi,
respectively, and df0 denotes the prior specified degrees of freedom of the Inverse Wishart hyper-prior
distribution on the group covariance Φi and Ψi.

• The full conditional posterior distributions of ᾱ(O)i and β(O)i, and ᾱ(S)i and β(S)i (i.e., the state i
specific group mean vector of the subject-specific batches of intercepts α(O)ki and α(S)ki pertaining to
the state-dependent probabilities and state transition probabilities, respectively, and the fixed regression
coefficients predicting the subject-specific batches of intercepts α(O)ki and α(S)ki) are:

Pr
(

[

ᾱ(O)i

β(O)i

]

|
)

∼ N
(

µ(O)ci,
1

Kc
Φi

)

(26)

µ(O)ci =
(

X⊤X + K0

)−1(

X⊤α(O)ki + K0

[

α(O)0

β(O)0

]

)

Kc = K + K0

Pr
(

[

ᾱ(S)i

β(S)i

]

|
)

∼ N
(

µ(S)ci,
1

Kc
Ψi

)

(27)

µ(S)ci =
(

X⊤X + K0

)−1(

X⊤α(S)ki + K0

[

α(S)0

β(S)0

]

)

Kc = K + K0

where α(O)0 and α(S)0 denote the chosen mean values of the Normal hyper-prior distribution on the
group mean vector ᾱ(O)i and ᾱ(S)i, respectively, β(O)0 and β(S)0 denote a vector of chosen values of
the Normal hyper-prior distribution on fixed regression parameters β(O)i and β(S)i, K0 denotes the
number of observations (i.e., the number of hypothetical prior subjects) on which the prior values α(O)0,
α(S)0, β(O)0, and β(S)0 are based, and K denotes the total number of subjects in the dataset.

For the random intercepts α(O)ki and α(S)ki, related to the subject-specific state-dependent probabilities
of observing a categorical outcome θki and the subject-specific state transition probability matrix Γk,
respectively, the choice of prior distributions does not result in closed form expressions of the full conditional
posterior distributions. That is, for the subject-specific sets of intercepts α(O)ki related to the subject-specific
state-dependent probabilities of observing a categorical outcome within state i, the full conditional posterior
distribution when we assess a standard multivariate normal prior is:

Pr(α(O)ki |) ∝ L
(

α(O)ki | Okt, Skt = i
)

Pr
(

α(O)ki | ᾱ(O)i, β(O)i, Φi

)

, (28)

Pr
(

α(O)ki | ᾱ(O)i, β(O)i, Φi

)

∼ N(ᾱ(O)i + X⊤β(O)i, Φi

)

),

and the likelihood is the product of the probabilities of the observed outcomes Okt = l ∈ {1, 2, . . . , q} within
sampled states S = i in subject k over time points t:

L
(

α(O)ki | Okt, Skt = i
)

=
∏

t

Pr(Ok,t = l | Skt = i, α(O)ki), (29)

Pr(Ok,t = l | Skt = i, α(O)ki) =
exp(α(O)kil)

1 +
∑q

l̄=2
exp(α(O)kil̄)

,

where the product is restricted to the set of time points that coincide with the sampled state S for subject k
at time point t being i, and q is the number of categorical outcomes. The numerator is set equal to one for
l = 1, making the first categorical outcome in the set the baseline category in every state.
For the subject-specific sets of intercepts α(S)ki related to the state-transition probabilities to transition from
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state i to any of the other states j ∈ {1, 2, . . . , m}, the full conditional posterior distribution when we assess
a standard multivariate normal prior is:

Pr(α(S)ki |) ∝ L
(

α(S)ki | Skt, Sk(t−1) = i
)

Pr
(

α(S)ki | ᾱ(S)i, β(S)i, Ψi

)

, (30)

Pr
(

α(S)ki | ᾱ(S)i, β(S)i, Ψi

)

∼ N(ᾱ(S)i + X⊤β(S)i, Ψi),

and the likelihood is the product of the probabilities of the observed transitions from state i in the previous
time point t − 1 to any of the other states Skt = j over time points t in subject k:

L
(

α(S)ki | Skt, Sk(t−1) = i
)

=
∏

n

Pr(Sk,t = j | Sk(t−1) = i, α(S)ki), (31)

Pr(Sk,t = j | Sk(t−1) = i, α(S)ki) =
exp(α(S)kij)

1 +
∑

j̄∈Z exp(α(S)kij̄)
,

where Z ∈ {1, 2, . . . , m, Z 6= 1}
where the product is restricted to the set of time points that coincide with the sampled state S in the previous
time point t − 1 being i for subject k, and m is the number of states. The numerator is set equal to 1 for
j = 1, making the first state of every row of the transition probability matrix Γk the baseline category.
As the conditional posterior distributions for α(O)ki and α(S)ki do not result in a closed form expression of a
know distribution, we cannot directly sample values of α(O)ki and α(S)ki from their conditional posterior
distributions with pre-defined equations on how to obtain the current (i.e., updated using a combination of
the value of the hyper-prior and the data) parameters of the conditional posterior distributions. Instead, new
values for α(O)ki and α(S)ki are sampled using a RW Metropolis sampler, as described above.
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