nleqslv: Solve Systems of Nonlinear Equations

Solve a system of nonlinear equations using a Broyden or a Newton method with a choice of global strategies such as line search and trust region. There are options for using a numerical or user supplied Jacobian, for specifying a banded numerical Jacobian and for allowing a singular or ill-conditioned Jacobian.

Version: 3.3.2
Published: 2018-05-17
Author: Berend Hasselman
Maintainer: Berend Hasselman <bhh at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
Materials: NEWS
In views: NumericalMathematics
CRAN checks: nleqslv results


Reference manual: nleqslv.pdf
Package source: nleqslv_3.3.2.tar.gz
Windows binaries: r-devel:, r-devel-gcc8:, r-release:, r-oldrel:
OS X binaries: r-release: nleqslv_3.3.2.tgz, r-oldrel: nleqslv_3.3.2.tgz
Old sources: nleqslv archive

Reverse dependencies:

Reverse depends: alphaOutlier, BayesGOF, GDAtools, GNE, mbrglm, ph2bye, SPmlficmcm
Reverse imports: acc, augSIMEX, brms, cglm, decisionSupport, drgee, dynsurv, frailtySurv, fungible, GEint, genpwr, georob, GWEX, hmmm, ipwErrorY, ivtools, ktsolve, LDPD, likelihoodAsy, LLSR, mclcar, meteR, mev, miCoPTCM, microsynth, momentuHMM, MSPRT, PCDSpline, pim, ppmHR, reReg, SimCorrMix, SimMultiCorrData, spef, spGARCH, SPPcomb, SWIM, touchard, TruncatedNormal, VFS
Reverse suggests: BinQuasi, epimdr, QuasiSeq


Please use the canonical form to link to this page.