Last updated on 2020-02-15 01:01:18 CET.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 0.1 | 17.44 | 110.51 | 127.95 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 0.1 | 13.73 | 84.81 | 98.54 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 0.2 | 78.00 | NOTE | |||
r-devel-linux-x86_64-fedora-gcc | 0.2 | 55.64 | NOTE | |||
r-devel-windows-ix86+x86_64 | 0.1 | 30.00 | 125.00 | 155.00 | NOTE | |
r-devel-windows-ix86+x86_64-gcc8 | 0.1 | 41.00 | 154.00 | 195.00 | NOTE | |
r-patched-linux-x86_64 | 0.1 | 14.00 | 97.85 | 111.85 | NOTE | |
r-patched-solaris-x86 | 0.2 | 144.20 | NOTE | |||
r-release-linux-x86_64 | 0.1 | 13.45 | 97.17 | 110.62 | NOTE | |
r-release-windows-ix86+x86_64 | 0.1 | 23.00 | 100.00 | 123.00 | NOTE | |
r-release-osx-x86_64 | 0.1 | NOTE | ||||
r-oldrel-windows-ix86+x86_64 | 0.1 | 15.00 | 93.00 | 108.00 | NOTE | |
r-oldrel-osx-x86_64 | 0.1 | NOTE |
Version: 0.1
Check: DESCRIPTION meta-information
Result: NOTE
Malformed Description field: should contain one or more complete sentences.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-windows-ix86+x86_64, r-devel-windows-ix86+x86_64-gcc8, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-windows-ix86+x86_64, r-release-osx-x86_64, r-oldrel-windows-ix86+x86_64, r-oldrel-osx-x86_64
Version: 0.1
Check: dependencies in R code
Result: NOTE
Packages in Depends field not imported from:
'HI' 'lme4' 'locfit' 'secr'
These packages need to be imported from (in the NAMESPACE file)
for when this namespace is loaded but not attached.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-windows-ix86+x86_64, r-devel-windows-ix86+x86_64-gcc8, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-windows-ix86+x86_64, r-release-osx-x86_64, r-oldrel-windows-ix86+x86_64, r-oldrel-osx-x86_64
Version: 0.1
Check: R code for possible problems
Result: NOTE
BBRecap: no visible global function definition for 'optimize'
BBRecap: no visible global function definition for 'arms'
BBRecap: no visible global function definition for 'median'
BBRecap : HPD.interval: no visible global function definition for
'density'
BBRecap : HPD.interval: no visible global function definition for
'quantile'
BBRecap.custom.part: no visible global function definition for
'optimize'
LBRecap: no visible global function definition for 'findbars'
LBRecap: no visible global function definition for 'as.formula'
LBRecap: no visible global function definition for 'glm'
LBRecap: no visible global function definition for 'binomial'
LBRecap: no visible global function definition for 'glmer'
LBRecap: no visible global function definition for 'logLik'
LBRecap: no visible global function definition for 'coef'
LBRecap: no visible global function definition for 'na.omit'
LBRecap: no visible global function definition for 'fixef'
LBRecap: no visible global function definition for 'ranef'
LBRecap: no visible global function definition for 'qnorm'
LBRecap: no visible global function definition for 'plot'
LBRecap: no visible global function definition for 'points'
LBRecap: no visible global function definition for 'axis'
LBRecap: no visible global function definition for 'abline'
LBRecap.custom.part: no visible global function definition for 'qnorm'
Undefined global functions or variables:
abline arms as.formula axis binomial coef density findbars fixef glm
glmer logLik median na.omit optimize plot points qnorm quantile ranef
Consider adding
importFrom("graphics", "abline", "axis", "plot", "points")
importFrom("stats", "as.formula", "binomial", "coef", "density", "glm",
"logLik", "median", "na.omit", "optimize", "qnorm",
"quantile")
to your NAMESPACE file.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-windows-ix86+x86_64, r-devel-windows-ix86+x86_64-gcc8, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-windows-ix86+x86_64, r-release-osx-x86_64, r-oldrel-windows-ix86+x86_64, r-oldrel-osx-x86_64
Version: 0.1
Check: examples
Result: ERROR
Running examples in 'BBRecapture-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: BBRecap.custom.part
> ### Title: Bayesian inference for behavioural effect models based on a
> ### partition of the set of all partial capture histories
> ### Aliases: BBRecap.custom.part
> ### Keywords: Behavioural models Bayesian inference
>
> ### ** Examples
>
> data(greatcopper)
> partition.Mc1=partition.ch(quant.binary,t=ncol(greatcopper),breaks=c(0,0.5,1))
> mod.Mc1=BBRecap.custom.part(greatcopper,partition=partition.Mc1)
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
BBRecapture
--- call from context ---
BBRecap.custom.part(greatcopper, partition = partition.Mc1)
--- call from argument ---
if (!(class(data) == "data.frame" | class(data) == "matrix" |
class(data) == "array" | class(data) == "table")) {
stop("input data must be a data.frame or a matrix object or an array")
}
--- R stacktrace ---
where 1: BBRecap.custom.part(greatcopper, partition = partition.Mc1)
--- value of length: 2 type: logical ---
[1] FALSE FALSE
--- function from context ---
function (data, last.column.count = FALSE, partition, neval = 1000,
by.incr = 1, prior.N = c("Rissanen", "Uniform", "one.over.N",
"one.over.N2"), output = c("base", "complete"))
{
prior.N = match.arg(prior.N)
output = match.arg(output)
prior = switch(prior.N, Rissanen = "Rissanen.prior", Uniform = "Uniform.prior",
one.over.N = "1overN.prior", one.over.N2 = "1overN^2.prior")
if (!(class(data) == "data.frame" | class(data) == "matrix" |
class(data) == "array" | class(data) == "table")) {
stop("input data must be a data.frame or a matrix object or an array")
}
if (class(data) == "table" | class(data) == "array") {
n.occ = length(dim(data))
mm = matrix(ncol = n.occ, nrow = 2^n.occ)
for (i in 1:2^n.occ) {
mm[i, ] = as.numeric(intToBits(i - 1) > 0)[1:n.occ]
}
data.vec = c(data)
data[1] = 0
dd = c()
for (i in 1:length(data)) {
dd = c(dd, rep(mm[i, ], data.vec[i]))
}
data.matrix = matrix(dd, ncol = length(dim(data)), byrow = T)
}
if (class(data.matrix) != "matrix") {
data.matrix = as.matrix(data)
}
if (last.column.count) {
if (any(data[, ncol(data)] < 0)) {
stop("Last column must contain non negative frequencies/counts")
}
data = as.matrix(data)
data.matrix = matrix(ncol = (ncol(data) - 1))
for (i in 1:nrow(data)) {
d = rep(data[i, 1:(ncol(data) - 1)], (data[i, ncol(data)]))
dd = matrix(d, ncol = (ncol(data) - 1), byrow = T)
data.matrix = rbind(data.matrix, dd)
}
data.matrix = data.matrix[-1, ]
}
if (any(data.matrix != 0 & data.matrix != 1))
stop("data must be a binary matrix")
if (sum(apply(data.matrix, 1, sum) == 0)) {
warning("input data argument contains rows with all zeros: these rows will be removed and ignored")
data.matrix = data.matrix[apply(data.matrix, 1, sum) !=
0, ]
}
t = ncol(data.matrix)
M = nrow(data.matrix)
p.p = c()
for (r in 1:length(partition)) {
pp = unique(partition[[r]])
p.p = c(p.p, pp)
}
p.p = sort(unique(p.p))
cond1 = !all(sort(unlist(list.historylabels(ncol(data.matrix)))) ==
p.p)
cond2 = max(table(unlist(partition))) > 1
if (cond1 | cond2)
stop("The input argument 'partition' does not represent a partition of the set of all partial capture histories")
prior.distr.N = function(x) {
if (prior == "Rissanen.prior") {
out = (rissanen(x))
}
if (prior == "Uniform.prior") {
out = (1/(x^0))
}
if (prior == "1overN.prior") {
out = (1/(x^1))
}
if (prior == "1overN^2.prior") {
out = (1/(x^2))
}
return(out)
}
partial = pch(data.matrix)
mm1 = matrix(NA, ncol = ncol(data.matrix), nrow = nrow(data.matrix))
mm0 = matrix(NA, ncol = ncol(data.matrix), nrow = nrow(data.matrix))
cc = c()
n.obs.1 = c()
n.obs.0 = c()
n.unobs = c()
log.post.N = c()
post.N = c()
vv = c()
prior.inv.const = 0
for (k in 1:length(partition)) {
for (i in 1:nrow(data.matrix)) {
for (j in 1:ncol(data.matrix)) {
mm1[i, j] = any(partition[[k]] == partial[i,
j]) & data.matrix[i, j] == 1
mm0[i, j] = any(partition[[k]] == partial[i,
j]) & data.matrix[i, j] == 0
}
}
n.obs.0[k] = sum(mm0)
n.obs.1[k] = sum(mm1)
}
for (k in 1:length(partition)) {
for (j in 1:ncol(data.matrix)) {
cc[j] = any(partition[[k]] == pch(matrix(rep(0, ncol(data.matrix)),
nrow = 1))[j])
}
n.unobs[k] = sum(cc)
}
for (l in 1:neval) {
val = seq(M, ((M + (neval - 1) * by.incr)), by = by.incr)
nn.0 = n.obs.0 + (n.unobs * (l - 1) * by.incr)
nn.1 = n.obs.1
prior.inv.const = prior.inv.const + prior.distr.N((M +
l - 1))
log.post.N[l] = lchoose((sum(nn.1) + sum(nn.0))/t, M) +
sum(lbeta((nn.1 + 1), (nn.0 + 1))) + log(prior.distr.N((M +
l - 1)))
}
l.max = max(log.post.N)
for (k in 1:neval) {
vv[k] <- exp(log.post.N[k] - l.max)
}
ss = sum(vv)
post.N = vv/ss
ord = order(post.N, decreasing = T)
p.max = ord[1]
mode.N = val[p.max]
mean.N <- round(sum(post.N * val))
median.N = M
g <- c()
for (k in 1:neval) {
g = c(g, post.N[k])
if (sum(g) <= 0.5)
median.N = median.N + 1
}
funzioneRMSE = function(x) {
sum((((x/val) - 1)^2) * post.N)
}
estimate.N = round(optimize(funzioneRMSE, c(min(val), max(val)))$minimum)
alpha <- 0.05
g = 0
d = 0
aa = c()
ordine <- order(post.N, decreasing = T)
w <- val
w <- w[ordine]
p <- post.N
p <- p[ordine]
for (k in 1:neval) {
if (g < (1 - alpha)) {
g = g + p[k]
d = d + 1
}
}
aa <- w[1:d]
inf.lim <- min(aa)
sup.lim <- max(aa)
log.marg.likelihood = log(sum(exp(log.post.N - max(log.post.N) -
log(prior.inv.const)))) + max(log.post.N)
out = switch(output, base = list(Prior.N = prior.N, N.hat.RMSE = estimate.N,
HPD.N. = c(inf.lim, sup.lim), log.marginal.likelihood = log.marg.likelihood),
complete = list(Prior.N = prior.N, N.hat.mean = mean.N,
N.hat.median = median.N, N.hat.mode = mode.N, N.hat.RMSE = estimate.N,
HPD.N = c(inf.lim, sup.lim), log.marginal.likelihood = log.marg.likelihood,
N.range = val, posterior.N = post.N, Partition = partition))
return(out)
}
<bytecode: 0x14310bc0>
<environment: namespace:BBRecapture>
--- function search by body ---
Function BBRecap.custom.part in namespace BBRecapture has this body.
----------- END OF FAILURE REPORT --------------
Error in if (!(class(data) == "data.frame" | class(data) == "matrix" | :
the condition has length > 1
Calls: BBRecap.custom.part
Execution halted
Flavor: r-devel-linux-x86_64-debian-clang
Version: 0.1
Check: examples
Result: ERROR
Running examples in ‘BBRecapture-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: BBRecap.custom.part
> ### Title: Bayesian inference for behavioural effect models based on a
> ### partition of the set of all partial capture histories
> ### Aliases: BBRecap.custom.part
> ### Keywords: Behavioural models Bayesian inference
>
> ### ** Examples
>
> data(greatcopper)
> partition.Mc1=partition.ch(quant.binary,t=ncol(greatcopper),breaks=c(0,0.5,1))
> mod.Mc1=BBRecap.custom.part(greatcopper,partition=partition.Mc1)
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
BBRecapture
--- call from context ---
BBRecap.custom.part(greatcopper, partition = partition.Mc1)
--- call from argument ---
if (!(class(data) == "data.frame" | class(data) == "matrix" |
class(data) == "array" | class(data) == "table")) {
stop("input data must be a data.frame or a matrix object or an array")
}
--- R stacktrace ---
where 1: BBRecap.custom.part(greatcopper, partition = partition.Mc1)
--- value of length: 2 type: logical ---
[1] FALSE FALSE
--- function from context ---
function (data, last.column.count = FALSE, partition, neval = 1000,
by.incr = 1, prior.N = c("Rissanen", "Uniform", "one.over.N",
"one.over.N2"), output = c("base", "complete"))
{
prior.N = match.arg(prior.N)
output = match.arg(output)
prior = switch(prior.N, Rissanen = "Rissanen.prior", Uniform = "Uniform.prior",
one.over.N = "1overN.prior", one.over.N2 = "1overN^2.prior")
if (!(class(data) == "data.frame" | class(data) == "matrix" |
class(data) == "array" | class(data) == "table")) {
stop("input data must be a data.frame or a matrix object or an array")
}
if (class(data) == "table" | class(data) == "array") {
n.occ = length(dim(data))
mm = matrix(ncol = n.occ, nrow = 2^n.occ)
for (i in 1:2^n.occ) {
mm[i, ] = as.numeric(intToBits(i - 1) > 0)[1:n.occ]
}
data.vec = c(data)
data[1] = 0
dd = c()
for (i in 1:length(data)) {
dd = c(dd, rep(mm[i, ], data.vec[i]))
}
data.matrix = matrix(dd, ncol = length(dim(data)), byrow = T)
}
if (class(data.matrix) != "matrix") {
data.matrix = as.matrix(data)
}
if (last.column.count) {
if (any(data[, ncol(data)] < 0)) {
stop("Last column must contain non negative frequencies/counts")
}
data = as.matrix(data)
data.matrix = matrix(ncol = (ncol(data) - 1))
for (i in 1:nrow(data)) {
d = rep(data[i, 1:(ncol(data) - 1)], (data[i, ncol(data)]))
dd = matrix(d, ncol = (ncol(data) - 1), byrow = T)
data.matrix = rbind(data.matrix, dd)
}
data.matrix = data.matrix[-1, ]
}
if (any(data.matrix != 0 & data.matrix != 1))
stop("data must be a binary matrix")
if (sum(apply(data.matrix, 1, sum) == 0)) {
warning("input data argument contains rows with all zeros: these rows will be removed and ignored")
data.matrix = data.matrix[apply(data.matrix, 1, sum) !=
0, ]
}
t = ncol(data.matrix)
M = nrow(data.matrix)
p.p = c()
for (r in 1:length(partition)) {
pp = unique(partition[[r]])
p.p = c(p.p, pp)
}
p.p = sort(unique(p.p))
cond1 = !all(sort(unlist(list.historylabels(ncol(data.matrix)))) ==
p.p)
cond2 = max(table(unlist(partition))) > 1
if (cond1 | cond2)
stop("The input argument 'partition' does not represent a partition of the set of all partial capture histories")
prior.distr.N = function(x) {
if (prior == "Rissanen.prior") {
out = (rissanen(x))
}
if (prior == "Uniform.prior") {
out = (1/(x^0))
}
if (prior == "1overN.prior") {
out = (1/(x^1))
}
if (prior == "1overN^2.prior") {
out = (1/(x^2))
}
return(out)
}
partial = pch(data.matrix)
mm1 = matrix(NA, ncol = ncol(data.matrix), nrow = nrow(data.matrix))
mm0 = matrix(NA, ncol = ncol(data.matrix), nrow = nrow(data.matrix))
cc = c()
n.obs.1 = c()
n.obs.0 = c()
n.unobs = c()
log.post.N = c()
post.N = c()
vv = c()
prior.inv.const = 0
for (k in 1:length(partition)) {
for (i in 1:nrow(data.matrix)) {
for (j in 1:ncol(data.matrix)) {
mm1[i, j] = any(partition[[k]] == partial[i,
j]) & data.matrix[i, j] == 1
mm0[i, j] = any(partition[[k]] == partial[i,
j]) & data.matrix[i, j] == 0
}
}
n.obs.0[k] = sum(mm0)
n.obs.1[k] = sum(mm1)
}
for (k in 1:length(partition)) {
for (j in 1:ncol(data.matrix)) {
cc[j] = any(partition[[k]] == pch(matrix(rep(0, ncol(data.matrix)),
nrow = 1))[j])
}
n.unobs[k] = sum(cc)
}
for (l in 1:neval) {
val = seq(M, ((M + (neval - 1) * by.incr)), by = by.incr)
nn.0 = n.obs.0 + (n.unobs * (l - 1) * by.incr)
nn.1 = n.obs.1
prior.inv.const = prior.inv.const + prior.distr.N((M +
l - 1))
log.post.N[l] = lchoose((sum(nn.1) + sum(nn.0))/t, M) +
sum(lbeta((nn.1 + 1), (nn.0 + 1))) + log(prior.distr.N((M +
l - 1)))
}
l.max = max(log.post.N)
for (k in 1:neval) {
vv[k] <- exp(log.post.N[k] - l.max)
}
ss = sum(vv)
post.N = vv/ss
ord = order(post.N, decreasing = T)
p.max = ord[1]
mode.N = val[p.max]
mean.N <- round(sum(post.N * val))
median.N = M
g <- c()
for (k in 1:neval) {
g = c(g, post.N[k])
if (sum(g) <= 0.5)
median.N = median.N + 1
}
funzioneRMSE = function(x) {
sum((((x/val) - 1)^2) * post.N)
}
estimate.N = round(optimize(funzioneRMSE, c(min(val), max(val)))$minimum)
alpha <- 0.05
g = 0
d = 0
aa = c()
ordine <- order(post.N, decreasing = T)
w <- val
w <- w[ordine]
p <- post.N
p <- p[ordine]
for (k in 1:neval) {
if (g < (1 - alpha)) {
g = g + p[k]
d = d + 1
}
}
aa <- w[1:d]
inf.lim <- min(aa)
sup.lim <- max(aa)
log.marg.likelihood = log(sum(exp(log.post.N - max(log.post.N) -
log(prior.inv.const)))) + max(log.post.N)
out = switch(output, base = list(Prior.N = prior.N, N.hat.RMSE = estimate.N,
HPD.N. = c(inf.lim, sup.lim), log.marginal.likelihood = log.marg.likelihood),
complete = list(Prior.N = prior.N, N.hat.mean = mean.N,
N.hat.median = median.N, N.hat.mode = mode.N, N.hat.RMSE = estimate.N,
HPD.N = c(inf.lim, sup.lim), log.marginal.likelihood = log.marg.likelihood,
N.range = val, posterior.N = post.N, Partition = partition))
return(out)
}
<bytecode: 0x55d93a045d50>
<environment: namespace:BBRecapture>
--- function search by body ---
Function BBRecap.custom.part in namespace BBRecapture has this body.
----------- END OF FAILURE REPORT --------------
Error in if (!(class(data) == "data.frame" | class(data) == "matrix" | :
the condition has length > 1
Calls: BBRecap.custom.part
Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 0.2
Check: dependencies in R code
Result: NOTE
Namespaces in Imports field not imported from:
‘locfit’ ‘secr’
All declared Imports should be used.
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-solaris-x86